
UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide
Rev. 0 — 7 December 2023 User guide

Document information
Information Content

Keywords IEC 60730, IEC 60335, UL 60730, UL 1998

Abstract The core self-test library provides functions performing the MCU core self-test. The library
consists of independent functions performing tests compliant with international standards (IEC
60730, IEC 60335, UL 60730, UL 1998).

https://www.nxp.com

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

1 Core self-test library

The core self-test library provides functions performing the MCU core self-test. The library consists of
independent functions performing tests compliant with international standards (IEC 60730, IEC 60335, UL
60730, UL 1998). The library supports the IAR, Keil, and MCUXpresso IDEs. The NXP core self-test library
performs the following tests:

1.1 Core-dependent part
• CPU registers test
• CPU program counter test
• Variable memory test
• Invariable memory test
• Stack test

1.2 Peripheral-dependent part
• Clock test
• Digital input/output test
• Analog input/output test
• Watchdog test
• Touch-sensing interface test (only for the TSIv5 and TSIv6 peripherals)

The test architecture, implementation, test, and validation of corresponding tests are comprehensively
described in independent sections for each test.

The library supports the MKV3x, MKV4x, MKV5x, MKE1xF, MK2xF, LPC54S0x, LPC540x, MIMXRT10xx,
MIMXRT117x, MIMXRT116x, MIMX8MNx,MIMX8MLx, and MIMX8MMx families based on the Arm-CM4 or Arm-
CM7 cores.

The core self-test library is distributed as an object code version. For the source code, contact an NXP
representative.

1.3 Core self-test library – object code
The object code of the library is divided into two parts: the core-dependent part and the peripheral-dependent
part with the corresponding header file.

The following are the object files for the given IDEs:

IDE Part Object file

Core • IEC60730B_ M4_M7_IAR_ v4_4.aIAR

Peripheral • IEC60730B_ M4_M7 _COM_IAR_v4_4.a

Core • IEC60730B_M4_M7_KEIL_ v4_4.libKeil

Peripheral • IEC60730B_ M4_M7 _COM_KEIL_v4_4.lib

Core • libIEC60730B_M4_M7_MCUX_ v4_4.aMCUX

Peripheral • libIEC60730B_M4_M7_COM_MCUX_v4_4.
a

Table 1. Library object code

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
2 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

1.4 Core self-test library – source code
The library name is IEC60730B_CM4_CM7. The main header files are iec60730b.h and iec60730b_core.h. All
the data types necessary for the library are defined in the iec60730b_types.h file.

Each source file (*.c or *.S) has a corresponding header (*.h) file.

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

iec60730b.h Library header file -

iec60730b_core.h Core-dependent
library header file

-

iec60730b_types.h Data types for the
library

-

asm_mac_common.h Common
assembler
directives

-

iec60730b_aio.c Analog I/O test FS_AIO_LimitCheck() 523 1.023

Analog I/O test FS_AIO_InputSet_A1() 906 1.416

Analog I/O test FS_AIO_InputSet_A23() 401 0.661

Analog I/O test FS_AIO_InputSet_A4() 403 0.893

Analog I/O test FS_AIO_InputSet_A7() 1142 1.882

Analog I/O test FS_AIO_InputSet_A5() 1127 19.087

Analog I/O test FS_AIO_InputSet_A6() 444 0.144

Analog I/O test FS_AIO_ReadResult_A23() 321 0.651

Analog I/O test FS_AIO_ReadResult_A4() 323 0.793

Analog I/O test FS_AIO_ReadResult_A7() 1362 0.552

Analog I/O test FS_AIO_ReadResult_A5() 487 14.427

Analog I/O test FS_AIO_ReadResult_A1() 446 1.696

Analog I/O test FS_AIO_ReadResult_A6() 1124 1.714

iec60730b_clock.c Clock test FS_CLK_Check() 441 0.511

Clock test FS_CLK_Init() 81 0.231

Clock test FS_CLK_LPTMR() 121 1.681

Clock test FS_CLK_RTC() - -

Clock test FS_CLK_GPT() 124 2.164

Clock test FS_CLK_WKT_LPC() -

Clock test FS_CLK_CTIMER() - -

Table 2. List of library items

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
3 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

iec60730b_dio.c Digital I/O test FS_DIO_Input() - -

Digital I/O test FS_DIO_Output() 1261 17.4
(delay=100)1

Digital I/O test FS_DIO_Output_IMXRT() 1244 94.33
(delay=3500)4

Digital I/O test FS_DIO_Output_IMX8M() 1305 71.1
(delay=2000)5

Digital I/O test FS_DIO_Output_LPC() 1567 34.65
(delay=75)7

iec60730b_dio_ext.c Extended digital I/
O test

FS_DIO_InputExt() 2281 1.781

Extended digital I/
O test

FS_DIO_ShortToSupplySet() 1521 1.241

Extended digital I/
O test

FS_DIO_ShortToAdjSet() 2881 2.231

Extended digital I/
O test

FS_DIO_InputExt_IMXRT() 2784 0.864

Extended digital I/
O test

FS_DIO_ShortToSupplySet_IMXRT() 1304 2.004

Extended digital I/
O test

FS_DIO_ShortToAdjSet_IMXRT() 2324 1.764

Extended digital I/
O test

FS_DIO_InputExt_IMX8M() 2945 13.775

Extended digital I/
O test

FS_DIO_ShortToSupplySet_IMX8M() 1565 13.215

Extended digital I/
O test

FS_DIO_ShortToAdjSet_IMX8M() 2805 23.255

Extended digital I/
O test

FS_DIO_InputExt_LPC() 1807 21.047

Extended digital I/
O test

FS_DIO_ShortToSupplySet_LPC() 1307 21.797

Extended digital I/
O test

FS_DIO_ShortToAdjSet_LPC() 2547 35.37

Extended digital I/
O test

FS_DIO_InputExt_MCX() - -

Extended digital I/
O test

FS_DIO_ShortToSupplySet_MCX() - -

Extended digital I/
O test

FS_DIO_ShortToAdjSet_MCX() - -

Extended digital I/
O test

FS_DIO_InputExt_RGPIO() - -

Table 2. List of library items...continued

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
4 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Extended digital I/
O test

FS_DIO_ShortToSupplySet_RGPIO() - -

Extended digital I/
O test

FS_DIO_ShortToAdjSet_RGPIO() - -

iec60730b_tsi.c Touch-sensing
interface test

FS_TSI_InputInit() - -

Touch-sensing
interface test

FS_TSI_InputStimulate() - -

Touch-sensing
interface test

FS_TSI_InputRelease() - -

Touch-sensing
interface test

FS_TSI_InputCheckNONStimulated() - -

Touch-sensing
interface test

FS_TSI_InputCheckStimulated() - -

Touch-sensing
interface test

FS_TSI_InputStimulate_v6() - -

Touch-sensing
interface test

FS_TSI_InputRelease_v6() - -

Touch-sensing
interface test

FS_TSI_InputCheckNONStimulated_
v6()

- -

Touch-sensing
interface test

FS_TSI_InputCheckStimulated_v6() - -

iec60730b_invariable_
memory.c

Invariable memory
test (Flash)

FS_FLASH_C_HW16_K() See the function dedicated chapter

Invariable memory
test (Flash)

FS_FLASH_C_HW16_L() See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW32_DCP() See the function dedicated chapter

iec60730b_cm4_cm7_
flash.S

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW16() See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW16() See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW32() See the function dedicated chapter

iec60730b_cm4_cm7_
pc.S

Program counter
test

FS_CM4_CM7_PC_Test() See the function dedicated chapter

iec60730b_cm4_cm7_
pc_object.S

Program counter
test

FS_PC_Object() See the function dedicated chapter

iec60730b_cm4_cm7_
ram.S

Variable memory
test (RAM)

FS_CM4_CM7_RAM_AfterReset() See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_Runtime() See the function dedicated chapter

Table 2. List of library items...continued

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
5 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyToBackup() See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyFrom
Backup()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarch
C()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarch
X()

See the function dedicated chapter

iec60730b_cm4_cm7_
reg.S

Register test FS_CM4_CM7_CPU_Register() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_NonStacked
Register()

See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Primask() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_SPmain() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_SPprocess() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Control() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Special() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Special8Priority
Levels()

See the function dedicated chapter

iec60730b_cm4_cm7_
reg_fpu.S

Register test FS_CM4_CM7_CPU_ControlFpu() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Float1() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Float2() See the function dedicated chapter

iec60730b_cm4_cm7_
stack.S

Stack test FS_CM4_CM7_STACK_Init() See the function dedicated chapter

Stack test FS_CM4_CM7_STACK_Test() See the function dedicated chapter

iec60730b_wdog.c Watchdog test FS_WDOG_Setup_LPTMR() 901 Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_KE0XZ() - Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_IMX_GPT() 645 Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_WWDT_CTIMER() - Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_WWDT_LPC_mrt() - Duration time
depends on the
WDOG timeout

Table 2. List of library items...continued

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
6 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Watchdog test FS_WDOG_Check() 1881 1.21

Watchdog test FS_WDOG_Check_WWDT_LPC() - -

Watchdog test FS_WDOG_Check_WWDT_LPC55
SXX()

- -

Watchdog test FS_WDOG_Check_WWDT_MCX() - -

Table 2. List of library items...continued

1.4.1 MIMX8MMx dedicated functions

Table 3 shows the list of functions dedicated for the MIMX8M Mini device family.

File Suitable function

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c Section "FS_DIO_Output_IMX8M()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt_IMX8M()"

Section "FS_DIO_ShortToSupplySet_IMX8M()"

Section "FS_DIO_ShortToAdjSet_IMX8M()"

iec60730b_wdog.c Section "FS_WDOG_Setup_IMX_GPT()"refresh_index = "FS_IMX8M"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 3. MIMX8MMx dedicated functions

1.4.2 MIMX8MNx and MIMX8MLx dedicated functions

Table 4 shows the list of functions dedicated for the MIMX8M Nano and MIMX8M Plus device families.

File Suitable function

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c Section "FS_DIO_Output_IMX8M()"

Table 4. MIMX8MNx and MIMX8MLx dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
7 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

iec60730b_dio_ext.c Section "FS_DIO_InputExt_IMX8M()"

Section "FS_DIO_ShortToSupplySet_IMX8M()"

Section "FS_DIO_ShortToAdjSet_IMX8M()"

iec60730b_wdog.c Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_IMX8M"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 4. MIMX8MNx and MIMX8MLx dedicated functions...continued

1.4.3 MIMXRT10xx dedicated functions

Table 5 shows the list of functions dedicated for the MIMXRT10xx device family.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A6()"

Section "FS_AIO_ReadResult_A6()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c Section "FS_DIO_Output_IMXRT()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt_IMXRT()"

Section "FS_DIO_ShortToSupplySet_IMXRT()"

Section "FS_DIO_ShortToAdjSet_IMXRT()"

iec60730b_wdog.c Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_IMXRT"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW32_DCP()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 5. MIMXRT10xx dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
8 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

1.4.4 MIMXRT117x/116x dedicated functions

Table 6 shows the list of functions dedicated for the MIMXRT117x and MIMXRT116x device families.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A1()"

Section "FS_AIO_ReadResult_A1()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c Section "FS_DIO_Output_IMXRT()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt_IMXRT()"

Section "FS_DIO_ShortToSupplySet_IMXRT()"

Section "FS_DIO_ShortToAdjSet_IMXRT()"

iec60730b_wdog.c Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_
IMXRTWDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 6. MIMXRT117x/116x dedicated functions

1.4.5 MK2xF dedicated functions

Table 7 shows the list of functions dedicated for the MK2xF device.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A23()"

Section "FS_AIO_ReadResult_A23()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Table 7. MK2xF dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
9 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 7. MK2xF dedicated functions...continued

1.4.6 MKE1xF dedicated functions

Table 8 shows the list of functions dedicated for the MKE1xF device.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A4()"

Section "FS_AIO_ReadResult_A4()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_WDOG32"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

Table 8. MKE1xF dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
10 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 8. MKE1xF dedicated functions...continued

1.4.7 MKV3x dedicated functions

Table 9 shows the list of functions dedicated for the MKV3x device.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A23()"

Section "FS_AIO_ReadResult_A23()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 9. MKV3x dedicated functions

1.4.8 MKV4x dedicated functions

Table 10 shows the list of functions dedicated for the MKV4x device.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A7()"

Section "FS_AIO_ReadResult_A7()"

Table 10. MKV4x dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
11 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 10. MKV4x dedicated functions...continued

1.4.9 MKV5x dedicated functions

Table 11 shows the list of functions dedicated for the MKV5x device.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A23()"

Section "FS_AIO_ReadResult_A23()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

Table 11. MKV5x dedicated functions

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
12 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 11. MKV5x dedicated functions...continued

1.4.10 LPC54S0x/LPC540x dedicated functions

Table 12 shows the list of functions dedicated for the LPC54S0x/LPC540x devices.

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A5()"

Section "FS_AIO_ReadResult_A5()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_CTIMER()"

iec60730b_dio.c Section "FS_DIO_Output_LPC()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt_LPC()"

Section "FS_DIO_ShortToSupplySet_LPC()"

Section "FS_DIO_ShortToAdjSet_LPC()"

iec60730b_wdog.c Section "FS_WDOG_Setup_WWDT_CTIMER() "

Section "FS_WDOG_Check_WWDT_LPC()"

iec60730b_cm4_cm7_flash.S Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_invariable_memory.c Section "FS_FLASH_C_HW16_L()"

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Table 12. LPC54S0x/LPC540x dedicated functions

1.4.11 MK32L3 CM4 dedicated functions

Table 13 shows the list of functions dedicated for the MK32L3 CM4 core.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
13 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A1()"

Section "FS_AIO_ReadResult_A1()"

iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c Section "FS_DIO_Output()"

iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S Functions are described in dedicated chapter

iec60730b_cm4_cm7_pc.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_ram.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_reg.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_Stack.S Functions are common for all CM4 CM7 devices

Table 13. MK32L3 dedicated functions for CM4 core

1.5 Functions performance measurement
This section contains remarks about the functons' informative size and approximate time of execution. The
numbers in the following list are used as remark links from the corresponding sections:

1. The function parameter was measured on MKV31 with a clock frequency of 80 MHz.
2. The function parameter was measured on MKV46 with a clock frequency of 80 MHz.
3. The function parameter was measured on MKE18F with a clock frequency of 100 MHz.
4. The function parameter was measured on MIMXRT1050 with a clock frequency of 600 MHz.
5. The function parameter was measured on MIMX8MN with a clock frequency of 600 MHz.
6. The function parameter was measured on MIMXRT1170 with a clock frequency of 996 MHz.
7. The function parameter was measured on LPC54S018M with a clock frequency of 96 MHz.

2 Analog Input/Output (IO) test

The analog IO test procedure performs the plausibility check of the analog IO interface of the processor. The
analog IO test can be performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return if an analog IO error occurs. Compare
the return value of the test function with the expected value. If it is equal to the FAIL return, then a jump into the
safety error handling function occurs. The safety error handling function may be specific to the application and it
is not a part of the library. The main purpose of this function is to put the application into a safety state.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
14 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The principle of the analog IO test is based on sequence execution, where a certain analog level is connected
to a defined analog input. The test function checks whether the converted value is within the tolerance. The test
must check the analog input interface with three reference values: reference high, reference low, and bandgap
voltage. See the device specification document to set up the correct values. The block diagram for the analog
IO test is shown in the following figure:

Figure 1. Block diagram for analog input test

The figure above shows the sequence of conversion and checks one channel. For the full ADC test, run this
sequence with three channels: reference high, reference low, and bandgap voltage. This sequence is handled
on the user application side, all functions from the library (with the FS_ prefix) are written as non-blocking.

2.1 Analog input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in the following table:

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.2 – A/D
conversion)

Abnormal operation B/R.1 Plausibility check

Table 14. Analog input/output test in compliance with IEC and UL standards

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
15 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

2.2 Analog input/output test implementation
The test functions for the analog IO test are in the iec60730b_aio.c file and written as "C" functions. The header
file with the function prototypes is iec60730b_aio.h. iec60730b.h and iec60730b_types.h are the common
header files for the safety library.

All functions are written as non-blocking, each function checks if the state variable is set to the necessary state.
If not, they return immediately.

Throughout all supported devices, the ADC module has a slightly different arrangement of the registers that
are involved in the test. Therefore, a standalone function is created for each ADC module. See Core self-test
library – source code version for the function dedicated for your device. Also the corresponding data type must
be used with this selected function.

The analog input test is based on a conversion of three analog inputs with known voltage values and it checks if
the converted values fit into the specified limits. Normally, the limits should be roughly 10 % around the desired
reference values.

For easier implementation of the AIO test to the final aplication, the IAO test is divided to three independent
cycles:

1. Conversion and check of low reference
2. Conversion and check of high reference
3. Conversion and check of bandgap reference (the middle range of voltage)

Each of this independent phase has its own "test instance" structure with the fs_aio_test_a<TYPE>_t data type.
The defined types which cover all supported devices are in the iec60730b_aio.h file. The selected type must
correspond to the used device. The description of each type is in the corresponding function description below.

The following functions are used to test the analog input:

• FS_AIO_InputSet_A1, FS_AIO_InputSet_A23, FS_AIO_InputSet_A4, FS_AIO_InputSet_A5,
FS_AIO_InputSet_A6, FS_AIO_InputSet_A7

• FS_AIO_ReadResult_A1, FS_AIO_ReadResult_A23, FS_AIO_ReadResult_A4, FS_AIO_ReadResult_A5,
FS_AIO_ReadResult_A6, FS_AIO_ReadResult_A7

• FS_AIO_LimitCheck

The FS_AIO_InputSet_A<xx> and FS_AIO_ReadResult_A<xx> functions are related directly to the used ADC
module.

The FS_AIO_LimitCheck function works only with the AIO test instance structure and are not related to the ADC
HW.

Each test instance structure has a "state" variable. This variable controls the code flow. You can use only a
part of the ADC check functions. For example, it is possible to use only "FS_AIO_LimitCheck()" and the HW
part of the test must be done on the application side. In this case, it is necessary to ensure that the state flow is
correctly handled. Before calling FS_AIO_LimitCheck() set the state to "FS_AIO_SCAN_COMPLETE" and fill
the "RawResult" variable.

The whole state flow is as follows:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
16 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 2. ADC Test Code flow

At the start, set the state variable to "FS_AIO_INIT". Test the items with this state. It can be used in function
"FS_AIO_InputSet_A<xx>, which sets the correct channel and trigger conversion of the ADC. After this function,
set the variable to "FS_AIO_PROGRESS". In the progress state, call the "FS_AIO_ReadResult_A<xx>"
function, which, in case that the conversion is complete, stores the conversion to the RawResult variable
in the test items structure and sets the state to "FS_AIO_SCAN_COMPLETE". After this, call the
FS_AIO_LimitCheck() function to check if RawResult is within Limits. This function sets the state variable to
FS_PASS or FS_FAIL.

Initialization of the test

In some *.c files, you must define a corresponding array variable:

Testing the instance variables definition

/***
 *
 *
 * STRUCTURE FOR AIO TEST
 *
 *
 *
 ***/
#define TESTED_ADC ADC0
#define ADC_RESOLUTION 12
#define ADC_REFERENCE 3.06
#define ADC_BANDGAP_LEVEL 1.7
#define ADC_DEVIATION_PERCENT 10
#define ADC_MAX ((1 << (ADC_RESOLUTION)) - 1)
#define ADC_BANDGAP_LEVEL_RAW (((ADC_BANDGAP_LEVEL) * (ADC_MAX)) /
 (ADC_REFERENCE))
#define ADC_MIN_LIMIT(val) (uint16_t)(((val) * (100 -
 ADC_DEVIATION_PERCENT)) / 100)
#define ADC_MAX_LIMIT(val) (uint16_t)(((val) * (100 +
 ADC_DEVIATION_PERCENT)) / 100)
fs_aio_test_a2346_t aio_safety_test_item_VL =
{
 .AdcChannel = 30,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(0),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(60),

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
17 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

 .state = FS_AIO_INIT
};
fs_aio_test_a2346_t aio_safety_test_item_VH =
{
 .AdcChannel = 29,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(ADC_MAX),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(ADC_MAX),
 .state = FS_AIO_INIT
};
fs_aio_test_a2346_t aio_safety_test_item_BG =
{
 .AdcChannel = 27,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(ADC_BANDGAP_LEVEL_RAW),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(ADC_BANDGAP_LEVEL_RAW),
 .state = FS_AIO_INIT
};
/* NULL terminated array of pointers to fs_aio_test_a2346_t items for safety AIO
 test */
fs_aio_test_a2346_t *g_aio_safety_test_items[] = {&aio_safety_test_item_VL,
 &aio_safety_test_item_VH,
 &aio_safety_test_item_BG,
 NULL};

After the definition, all necessarry variables and initialization of ADC HW can be called as a function for the AIO
test:

Test

for(uint8_t i=0;i<3;i++) /* 3 test items VL, VH and BG */
{
 static int index = 0; /* Iteration variable for going through all ADC test
 items */
 psSafetyCommon->AIO_test_result =
 FS_AIO_LimitCheck(g_aio_safety_test_items[index]->RawResult,
 &(g_aio_safety_test_items[index]->Limits), &(g_aio_safety_test_items[index]-
>state));
 switch (psSafetyCommon->AIO_test_result)
 {
 case FS_AIO_INIT:
 FS_AIO_InputSet_A23(g_aio_safety_test_items[index], (fs_aio_a23_t
 *)TESTED_ADC);
 break;
 case FS_AIO_PROGRESS:
 FS_AIO_ReadResult_A23(g_aio_safety_test_items[index], (fs_aio_a23_t
 *)TESTED_ADC);
 break;
 case FS_PASS: /* successfull execution of test, call the trigger function
 again */
 if(g_aio_safety_test_items[++index] == NULL)
 {
 index = 0; /* again first channel*/
 }
 g_aio_safety_test_items[index]->state = FS_AIO_INIT;
 break;
 default:
 __asm("NOP");
 break;
 }
 /* Necessary delay for conversion time */
 for (uint8_t y = 0; y < 20; y++){ __asm("nop");}

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
18 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

}

2.2.1 ADC type A1

The ADC type of the A1 covers at least the following device families: K32L3A6, LPC55xx, i.MX RT117x, and
i.MX RT116x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A1
• FS_AIO_ReadResult_A1
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary use these data types:

• fs_aio_test_a1_t - for the test instance
• fs_aio_a1_t - for a pointer to the ADC peripheral

2.2.1.1 fs_aio_a1_t

fs_aio_a1_t is data type for acessing ADC module registers. This data type is defined in the iec60730b_types.h
file and supports the device families mentioned above.

2.2.1.2 fs_aio_test_a1_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint16_t commandBuffer;
 uint8_t SideSelect; /* 0 = A side, 1 = B side*/
 uint8_t softwareTriggerEvent;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a1_t;

• AdcChannel - the number of the ADC channel
• comandBuffer - the index of CommandBuffer
• SideSelect - 0 A side, 1 B side
• softwareTriggerEvent - the index of the software trigger
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of "AdcChannel"
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.1.3 FS_AIO_InputSet_A1()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
19 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function prototype:

FS_RESULT FS_AIO_InputSet_A1(fs_aio_test_a1_t *pObj, fs_aio_a1_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.1.4 FS_AIO_ReadResult_A1()

This function is tied to the ADC hardware. This function reads the converted analog value only if pObj->state
== FS_AIO_PROGRESS. When the valule is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE". The function uses a non-blocking approach.

Function prototype:

FS_RESULT FS_AIO_ReadResult_A1(fs_aio_test_a1_t *pObj, fs_aio_a1_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.2 ADC type A23

The ADC type A23 covers at least the following device families: KV1x, KV3x, KLxx, K32L2A, K32L2B, K22F,
KW3x, and KE0x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A23
• FS_AIO_ReadResult_A23
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a2346_t - for the test instance

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
20 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• fs_aio_a23_t - for a pointer to the ADC peripheral

2.2.2.1 fs_aio_a23_t

The "fs_aio_a23_t" data type serves for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.2.2 fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of AdcChannel
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.2.3 FS_AIO_InputSet_A23()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A23(fs_aio_test_A2346_t *pObj, fs_aio_a23_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
21 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

2.2.2.4 FS_AIO_ReadResult_A23()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A23(fs_aio_test_a2346_t *pObj, fs_aio_a23_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.3 ADC type A4

The ADC type A4 covers at least the following device families: KE1xZ and KE1xF.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A4
• FS_AIO_ReadResult_A4
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a2346_t - for the test instance
• fs_aio_a4_t - for a pointer to the ADC peripheral

2.2.3.1 fs_aio_a4_t

The "fs_aio_a4_t" data type serves for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.3.2 fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
22 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of AdcChannel
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.3.3 FS_AIO_InputSet_A4()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A4(fs_aio_test_a2346_t *pObj, fs_aio_a4_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.3.4 FS_AIO_ReadResult_A4()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A4(fs_aio_test_a2346_t *pObj, fs_aio_a4_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
23 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library – source code version.

2.2.4 ADC type A6

The ADC type A6 covers at least the following device family: i.MXRT10xx.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A6
• FS_AIO_ReadResult_A6
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a2346_t - for test instance
• fs_aio_a6_t - for a pointer to the ADC peripheral

2.2.4.1 fs_aio_a6_t

The "fs_aio_a6_t" data type is used for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.4.2 fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of AdcChannel
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.4.3 FS_AIO_InputSet_A6()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A6(fs_aio_test_A2346_t *pObj, fs_aio_a6_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
24 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.4.4 FS_AIO_ReadResult_A6()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When valule is readed is stored to pObj->RawResult and variable pObj->State is set
to "FS_AIO_SCAN_COMPLETE"

Function prototype:

FS_RESULT FS_AIO_ReadResult_A6(fs_aio_test_a2346_t* pObj, fs_aio_a6_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.5 ADC type A5

The ADC type A5 covers at least the following device families: LPC51U68, LPC8xx, LPC540x, and LPC54S0x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A5
• FS_AIO_ReadResult_A5
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a5_t - for the test instance
• fs_aio_a5_t - for a pointer to the ADC peripheral

2.2.5.1 fs_aio_a5_t

The "fs_aio_a5_t" data type servesfor acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
25 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

2.2.5.2 fs_aio_test_a5_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint8_t sequence;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a5_t;

• AdcChannel - the number of the ADC channel
• sequence - the index of the used sequence
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of AdcChannel
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.5.3 FS_AIO_InputSet_A5()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A5(fs_aio_test_a5_t *pObj, fs_aio_a5_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.5.4 FS_AIO_ReadResult_A5()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A5(fs_aio_test_a5_t* pObj, fs_aio_a5_t *pAdc);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
26 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.6 ADC type A7

The ADC type A7 covers at least the following device family: KV4x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A7
• FS_AIO_ReadResult_A7
• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a7_t - for the test instance
• fs_aio_a7_t - for a pointer to the ADC peripheral

2.2.6.1 fs_aio_a7_t

The "fs_aio_a7_t" data type is used for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.6.2 fs_aio_test_a7_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint8_t Sample;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a7_t;

• AdcChannel - the number of the ADC channel
• Sample - the number of the sample register
• Limits - a structure with low and high limits for AdcChannel
• RawResult - a raw result of the ADC conversion of AdcChannel
• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,

FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
27 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

2.2.6.3 FS_AIO_InputSet_A7()

This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A7(fs_aio_test_a7_t *pObj, fs_aio_a7_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.6.4 FS_AIO_ReadResult_A7()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A7(fs_aio_test_a7_t *pObj, fs_aio_a7_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.7 FS_AIO_LimitCheck()

This function executes the last part of the AIO test sequence and it is common for all ADC types. If the state is
"FS_AIO_SCAN_COMPLETE", the function checks if value from the "RawResult" input parameter is within the
limits from the "pLimits" structure.

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
28 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_AIO_LimitCheck(uint32_t RawResult, fs_aio_limits_t *pLimits, FS_RESULT *pState);

Function inputs:

uint32_t RawResult - The input argument is the "RawResult" of the ADC conversion.

*pLimits - The input argument is the pointer to the "fs_aio_limits_t" structure with conversion limits.

*pState - The input argument is the pointer to the "FS_RESULT" variable.

Function output:

typedef uint32_t FS_RESULT;

• FS_FAIL_AIO - The input "RawResult" is not within the borders defined in "Limits".
• FS_PASS - The input "RawResult" is in the border defined in "Limits".

If any other value is returned, the function has no effect.

Function call example:

The example of the function call is provided in Section "Analog input/output test implementation".

Function performance:

The information about the function performance is in Core self-test library – source code version.

3 Clock test

The clock test procedure tests the oscilators of the processor for the wrong frequency. The clock test can be
performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return in case of a clock fault. Assess the
return value of the test function. If it is equal to the FAIL return, then a jump into the safety error handling
function should occur. The safety error handling function is specific to the application and it is not a part of the
library. The main purpose of this function is to put the application into a safety state.

The clock test principle is based on the comparison of two independent clock sources. If the test routine detects
a change in the frequency ratio between the clock sources, a fail error code is returned. The test routine uses
one timer and one periodical event in the application. The periodical event could be also an interrupt from a
different timer than that already involved.

The device supported by the library has many timer/counter modules. See Core self-test library – source code
version for a function suitable for your device.

The block diagram for the clock test is shown in Figure 3.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
29 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 3. Block diagram for clock test

3.1 Clock test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the EC 60730-1, IEC 60335, UL 60730,
and UL 1998 standards, as described in the following table:

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Clock test 3.Clock Wrong frequency B / R.1 Frequency monitoring

Table 15. Clock test in compliance with IEC and UL standards

3.2 Clock test implementation
The test functions for the clock test are in the iec60730b_clock.c file and they are written as "C" functions. The
header file with the function prototypes is iec60730b_clock.h. iec60730b.h and iec60730b_types.h are the
common header files for the safety library.

The following functions are called to test the clock frequency:

• FS_CLK_Init()
• FS_CLK_LPTMR() / FS_CLK_RTC() / FS_CLK_GPT() / FS_CLK_WKT_LPC() / FS_CLK_CTIMER()
• FS_CLK_Check()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
30 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Configure the reference timer, choose an appropriate periodical event, and calculate the limit values.
Declare the 32-bit global variable for storing the content of the timer counter register. The clock source of the
chosen timer must differ from the clock source of the periodical event. The FS_CLK_Init() function is called
once, usually before the while() loop. The FS_CLK_LPTMR() (to choose the dedicated function for your
device, see Core self-test library – source code version) function is then called within a periodic event. The
FS_CLK_Check() function for evaluation can be called at any given time. When the test is in the initialization
phase, the check function returns the “in progress” value. If the captured value from the reference counter is
within the preset limits, the check function returns a pass value. If not, a defined fail value is returned.

The example of the test implementation is as follows:

#include “iec60730b.h”
FS_RESULT st;
unsigned long clockTestContext;
#defineISR_FREQUENCY (100)
#define CLOCK_TEST_TOLERANCE (10)
#define REF_TIMER_CLOCK_FREQUENCY (32e03l)
RTC_SC = RTC_SC_RTCLKS(2)|RTC_SC_RTCPS(1);
SysTick->VAL = 0x0;
SysTick->LOAD = 100e6*0.01;
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk|
SysTick_CTRL_TICKINT_Msk;
SysTick->VAL = 0x0;
FS_CLK_Init(&clockTestContext);
 while(1) { st = FS_CLK_Check(clockTestContext, FS_CLK_FREQ_LIMIT_LO,
 FS_CLK_FREQ_LIMIT_HI);
if (FS_FAIL_CLK == st) SafetyError();
}
void timer_isr(void)
{
 FS_CLK_RTC((uint32_t*)RTC_BASE_PTR, &clockTestContext);
}

3.2.1 FS_CLK_Init()

This function initializes one instance of the clock sync test. It sets the TestContext value to the “in progress”
state.

Function prototype:

void FS_CLK_Init(uint32_t *pTestContext);

Function inputs:

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.2 FS_CLK_Check()

This function handles the clock test. It evaluates the captured value stored in the testContext variable
with predefined limits. Until the first execution of the respective Isr function, the check function returns
FS_CLK_PROGRESS.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
31 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function prototype:

FS_RESULT FS_CLK_Check(uint32_t testContext, uint32_t limitLow, uint32_t limitHigh);

Function inputs:

testContext - The captured value of the timer.

limitLow - The low limit.

limitHigh - The high limit.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - The testContext fits into the limits.
• FS_FAIL_CLK - The testContext value does not fit into the limits.
• FS_CLK_PROGRESS - The reference counter value is not read yet.

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.3 FS_CLK_LPTMR()

This function is used only with the LPTMR module. The function reads the counter value from the timer and
saves it into the TestContext variable. After that, the function starts the LPTMR again.

Function prototype:

void FS_CLK_LPTMR(fs_lptmr_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.4 FS_CLK_RTC()

This function is used only with the RTC module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the RTC again.

Function prototype:

void FS_CLK_RTC(fs_rtc_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
32 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.5 FS_CLK_GPT()

This function is used only with the GPT module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the GPT again.

Function prototype:

void FS_CLK_GPT(fs_gpt_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.6 FS_CLK_CTIMER()

This function is used only with the CTimer module. This function reads the counter value from the timer and
saves it into the TestContext variable. After that, it starts the CTimer again.

Function prototype:

void FS_CLK_CTIMER(fs_ctimer_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.7 FS_CLK_WKT_LPC()

This function is used only with the WKT module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the WKT again.

Function prototype:

void FS_CLK_WKT_LPC(fs_wkt_t *pSafetyTmr, uint32_t *pTestContext, uint32_t startValue);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

startValue - The start value to decrease the WKT counter.
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
33 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

4 Digital input/output test

The Digital Input/Output (DIO) test procedure performs the plausibility check of the processor's digital IO
interface.

The identification of the safety error is ensured by the specific FAIL return in case of the digital IO error. Assess
the return value of the test function and if it is equal to the FAIL return, the move into the safety error handling
function should occur. The safety error handling function may be specific to the application and it is not a part of
the library. The main purpose of this function is to put the application into a safe state.

The DIO test functions are designed to check the digital input and output functionality and short circuit
conditions between the tested pin and the supply voltage, ground, or optional adjacent pin. The execution of
the DIO tests must be adapted to the final application. Be careful with the hardware connections and design. Be
sure about which functions can be applied to a respective pin. In most of cases, the tested (and sometimes also
auxiliary) pin must be reconfigured during the application run. When testing the digital output, reserve enough
time between the test arrangement and the reading of results.

4.1 Digital input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in Table 16.

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.1 – Digital
I/O)

Abnormal operation B/R.1 Plausibility check

Table 16. Digital input/output test in compliance with IEC and UL standards

4.2 Digital input/output test implementation
The test functions for the digital IO test are placed in the iec60730b_dio.c and iec60730b_dio_ext.c files. The
header files with the function prototypes are iec60730b_dio.h and iec60730b_dio_ext.h. iec60730b.h and
iec60730b_types.h are the common header files for the safety library.

The digital input/output tests can be executed using the following functions properly:

• FS_DIO_Input()
• FS_DIO_Output() / FS_DIO_Output_IMXRT() / FS_DIO_Output_IMX8M() / FS_DIO_Output_LPC()
• FS_DIO_InputExt() / FS_DIO_InputExt_IMXRT() / FS_DIO_InputExt_IMX8M() / FS_DIO_InputExt_LPC()/

FS_DIO_InputExt_RGPIO()/ FS_DIO_InputExt_MCX()
• FS_DIO_ShortToSupplySet() / FS_DIO_ShortToSupplySet_IMXRT() / FS_DIO_ShortToSupplySet_IMX8M() /

FS_DIO_ShortToSupplySet_LPC()/ FS_DIO_ShortToSupplySet_RGPIO() /
FS_DIO_ShortToSupplySet_MCX()

• FS_DIO_ShortToAdjSet() / FS_DIO_ShortToAdjSet_IMXRT() / FS_DIO_ShortToAdjSet_IMX8M() /
FS_DIO_ShortToAdjSet_LPC()/ FS_DIO_ShortToAdjSet_RGPIO()/ FS_DIO_ShortToAdjSet_MCX()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
34 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The pointer to the "fs_dio_test_t" structure type is a parameter of each function. The structure is defined in the
iec60730b_dio.h file.

 typedef struct
 {
 uint32_t pcr; /* Pin control register */
 uint32_t pddr; /* Port data direction register */
 uint32_t pdor; /* Port data output register */
 } fs_dio_backup_t;
 typedef struct
 {
 uint32_t gpio;
 fs_dio_backup_t pcr;
 uint8_t pinNum;
 uint8_t pinDir;
 uint8_t pinMux;
 fs_dio_backup_t sTestedPinBackup;
 } fs_dio_test_t;

These variables must be initialized before calling a test function. The following is an example of initialization:

fs_dio_test_t dio_safety_test_item_0 =
{
 .gpio = GPIOE_BASE,
 .pcr = PORTE_BASE,
 .pinNum = 24,
 .pinDir = PIN_DIRECTION_IN,
 .pinMux = PIN_MUX_GPIO,
};
fs_dio_test_t dio_safety_test_item_1 =
{
 .gpio = GPIOA_BASE,
 .pcr = PORTA_BASE,
 .pinNum = 2,
 .pinDir = PIN_DIRECTION_OUT,
 .pinMux = PIN_MUX_GPIO,
};
fs_dio_test_t *dio_safety_test_items[] = { &dio_safety_test_item_0,
 &dio_safety_test_item_1, 0 };
if (dio_safety_test_item_0 .gpio == GPIOE_BASE)
 dio_safety_test_item_0 .pcr = PORTE_BASE;
if (dio_safety_test_item_1 .gpio == GPIOA_BASE)
 dio_safety_test_item_1 .pcr = PORTA_BASE;

4.2.1 FS_DIO_Input()

This function executes the digital input test. The test tests one digital pin. The pin is tested according to the
block diagram in Figure 4:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
35 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 4. Block diagram for digital input test

Function prototype:

FS_RESULT FS_DIO_Input(fs_dio_test_t *pTestedPin, bool_t expectedValue);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

expectedValue - The expected input value. Adjust this parameter correctly.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT- The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_Input(&dio_safety_test_items[0],
 DIO_EXPECTED_VALUE);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
36 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO with input direction.

4.2.2 FS_DIO_Output()

The digital output test tests the digital output functionality of the pin. The principle of the test is to set up and
read both logical values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is
long enough for the device to reach the desired logical value on the pin. A very low delay parameter causes the
fail return value of the function.

Figure 5. Block diagram for digital output test

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
37 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output(fs_dio_test_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.
• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.
• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output(&dio_safety_test_items[1],
 DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the digital output. Define an appropriate delay for proper functionality.

4.2.3 FS_DIO_InputExt()

This is a modified version of the previously mentioned digital input test. It cannot be used with MKE0x devices.
This version is a get function for the "short-to" tests. The function is applied to the pin that is already configured
as a GPIO input and you know what logical level is expected at the time of the test. The logical level can
result from the actual configuration in the application or it can be initialized for the test (if possible). The block
diagram of the FS_DIO_InputExt() function is shown in Figure 6. Two function input parameters are related to
an adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs
as for the tested pin (recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
38 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 6. Extended digital input test

Function prototype:

FS_RESULT FS_DIO_InputExt(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
39 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before
calling the function. Even if no adjacent pin is involved in the test, specify the AdjacentPin parameter. It is
recommended to enter the same input as for the TestedPin.

4.2.4 FS_DIO_ShortToAdjSet()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 7. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt() function is described in the respective section. Specify the tested pin and the adjacent
pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
40 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 7. Block diagram of FS_DIO_ShortToAdjSet() function

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
41 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

Function always returns the first detected error.

Example of function call:

The following is the code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input and
the adjacent pins must be configured as GPIO outputs before calling the function. If the backup functionality is
enabled, the function sets directions for both pins. If not, configure the directions (the tested pin as the input, the
adjacent pin as the output). After the end of the function, the application cannot manipulate neither the tested
nor the adjacent pins until the FS_DIO_InputExt() function is called for these pins.

4.2.5 FS_DIO_ShortToSupplySet()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between
the tested pin and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 8. The second part of the test (result evaluation) is ensured
by the FS_DIO_InputExt() function that is described in the respective section. The main purpose of the
FS_DIO_InputExt() function is to set the pull-up (or pull-down) resistor connection on the tested pin. It also
ensures whether the pin is correctly configured and backs up its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
42 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 8. Block diagram of FS_DIO_ShortToSupplySet function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet(fs_dio_test_t *pTestedPin, bool_t shortToVoltage, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for the short against GND or Vdd. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short-to-GND is tested, the parameter must have a
non-zero value and the other way around.

#define DIO_SHORT_TO_GND_TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
43 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before
calling the function. If the backup functionality is enabled, the function sets the input direction for the tested pin.
If not, configure the input direction. After the end of the function, the application cannot manipulate the tested
pin until the FS_DIO_InputExt() function is called for the tested pin.

4.2.6 FS_DIO_InputExt_MCX()

This is a modified version of the previously mentioned digital input test. This version is a get function for the
"short-to" tests. The function is applied to the pin that is already configured as a GPIO input and you know what
logical level is expected at the time of the test. The logical level can result from the actual configuration in the
application or it can be initialized for the test (if possible). The block diagram is shown in Figure 6. Two function
input parameters are related to an adjacent pin. For a simple input test functionality, these parameters are not
important. Enter the same inputs as for the tested pin (recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
44 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 9. Extended digital input test

Function prototype:

FS_RESULT FS_DIO_InputExt_MCX(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_WRONG_VALUE - Different value on pin against the settings.
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_MCX(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
45 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function works only on dedicated devices (see Core self-test library – source code version). The tested pin
must be configured as a GPIO input before calling the function. Even if no adjacent pin is involved in the test,
specify the AdjacentPin parameter. It is recommended to enter the same input as for the TestedPin.

4.2.7 FS_DIO_ShortToAdjSet_MCX()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can
be theoretically shorted with the tested pin. The function block diagram is shown in Block diagram of
FS_DIO_ShortToAdjSet_MCX() function. Similarly to the short-to-supply test, this test requires the use of
two functions. The second (get) function evaluates the test result. The FS_DIO_InputExt_MCX() function is
described in the respective section. Specify the tested pin and the adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
46 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 10. Block diagram of FS_DIO_ShortToAdjSet_MCX() function

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
47 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_MCX(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is the code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_MCX(&dio_safety_test_items[0], &dio_safety_test_items[1],
 LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt_MCX(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input and
the adjacent pins must be configured as GPIO outputs before calling the function. If the backup functionality is
enabled, the function sets directions for both pins. If not, configure the directions (the tested pin as the input, the
adjacent pin as the output). After the end of the function, the application cannot manipulate neither the tested
nor the adjacent pins until the FS_DIO_InputExt_MCX() function is called for these pins.

4.2.8 FS_DIO_ShortToSupplySet_MCX()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between
the tested pin and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Block diagram of FS_DIO_ShortToSupplySet_MCX function. The second
part of the test (result evaluation) is ensured by the FS_DIO_InputExt_MCX() function that is described in the
respective section. The main purpose of the FS_DIO_InputExt_MCX() function is to set the pull-up (or pull-
down) resistor connection on the tested pin. It also ensures whether the pin is correctly configured and backs up
its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
48 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 11. Block diagram of FS_DIO_ShortToSupplySet_MCX function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_MCX(fs_dio_test_t *pTestedPin, bool_t shortToVoltage, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for the short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short-to-GND is tested, the parameter must have a
non-zero value and the other way around.

#define DIO_SHORT_TO_GND_TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
49 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_MCX(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_MCX(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_MCX(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_MCX(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before
calling the function. If the backup functionality is enabled, the function sets the input direction for the tested pin.
If not, configure the input direction. After the end of the function, the application cannot manipulate the tested
pin until the FS_DIO_InputExt_MCX() function is called for the tested pin.

4.2.9 FS_DIO_InputExt_IMX8M()

This is a modified version of the previously mentioned digital input test. Use this version as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a GPIO input and you know
what logical level is expected at the time of the test. The logical level results from the actual configuration in
the application or it is initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_IMX8M()
function is shown in Figure 12. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
50 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 12. Extended digital input test for IMX8M

Function prototype:

FS_RESULT FS_DIO_InputExt_IMX8M(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
51 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the i.MX8M devices. Configure the tested pin as a GPIO input before
calling the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is
recommended to enter the same input as for "TestedPin".

4.2.10 FS_DIO_Output_IMX8M()

This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical
values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough
for the device to reach the desired logical value on the pin. A very low delay parameter causes the "fail" return
value of the function.

Figure 13. Block diagram for digital output test

Function prototype:
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
52 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output_IMX8M(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.
• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.
• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_IMX8M(&dio_safety_test_items[1],
 DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.11 FS_DIO_ShortToAdjSet_IMX8M()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 14. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_IMX8M() function is described in the respective chapter. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
53 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 14. Block diagram of FS_DIO_ShortToAdjSet_IMX8M() function

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
54 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_IMX8M(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin,
bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_IMX8M(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pin must be configured as a GPIO
output before calling the function. If the backup functionality is enabled, the function sets the directions for
both pins. If not, configure the directions (the tested pin as the input, the adjacent pin as the output). After
the end of the function, the application cannot manipulate neither the tested pin nor the adjacent pin until the
FS_DIO_InputExt_IMX8M() function is called for these pins.

4.2.11.1 FS_DIO_ShortToAdjSet_LPC()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 15. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_LPC() function is described in the respective section. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
55 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 15. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
56 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.
• FS_FAIL_DIO_MODE - The tested or adjacent pins do not have the "digimode" set - only for specific LPC

devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0], &dio_safety_test_items[1],
 LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pins must be configured as GPIO outputs
before calling the function. If the backup functionality is enabled, the function sets the directions for both pins.
If not, configure the directions (tested pin as input, adjacent pin as output). After the end of the function, the
application can manipulate neither the tested nor the adjacent pins until the FS_DIO_InputExt_LPC() function is
called for these pins.

4.2.12 FS_DIO_ShortToSupplySet_IMX8M()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the
tested pin and the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 16. The second part of the test (result evaluation) is ensured
by the FS_DIO_InputExt_IMX8M() function described in the respective section. The main purpose of the
FS_DIO_InputExt_IMX8M() function is to set the pull-up or pull-down resistor connections on the tested pin. It
also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
57 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 16. Block diagram of FS_DIO_ShortToSupplySet_IMX8M() function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_IMX8M(fs_dio_test_imx_t *pTestedPin, bool_t shortToVoltage, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short to the GND is tested, the parameter must have a
non-zero value (and the other way around).

#define DIO_SHORT_TO_GND_TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
58 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_IMX8M(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_IMX8M(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is
enabled, the function sets the input direction for the tested pin. If not, configure the input direction. After the end
of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt_IMX8M() function is
called for the tested pin.

4.2.13 FS_DIO_InputExt_IMXRT()

This is a modified version of the previously mentioned digital input test. Use this version as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a GPIO input and you know
what logical level is expected at the time of the test. The logical level results from the actual configuration in
the application or it is initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_IMXRT()
function is shown in Figure 17. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
59 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 17. Extended digital input test for IMXRT

Function prototype:

FS_RESULT FS_DIO_InputExt_IMXRT(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
60 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the i.MX RT devices. Configure the tested pin as a GPIO input before
calling the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is
recommended to enter the same input as for "TestedPin".

4.2.14 FS_DIO_Output_IMXRT()

This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical
values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough
for the device to reach the desired logical value on the pin. A very low delay parameter causes the "fail" return
value of the function.

Figure 18. Block diagram for digital output test

Function prototype:
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
61 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output_IMXRT(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.
• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.
• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_IMXRT(&dio_safety_test_items[1],
 DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.15 FS_DIO_ShortToAdjSet_IMXRT()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 19. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_IMXRT() function is described in the respective chapter. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
62 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 19. Block diagram of FS_DIO_ShortToAdjSet_IMXRT() function

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
63 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_IMXRT(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin,
bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_IMXRT(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pin must be configured as a GPIO output
before calling the function. If the backup functionality is enabled, the function sets the directions for both pins.
If not, configure the directions (tested pin as input, adjacent pin as output). After the end of the function, the
application cannot manipulate neither the tested pin nor the adjacent pin until the FS_DIO_InputExt_IMXRT()
function is called for these pins.

4.2.16 FS_DIO_ShortToSupplySet_IMXRT()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the
tested pin and the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 20. The second part of the test (result evaluation) is ensured
by the FS_DIO_InputExt_IMXRT() function described in the respective section. The main purpose of the
FS_DIO_InputExt_IMXRT() function is to set the pull-up or pull-down resistor connections on the tested pin. It
also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
64 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 20. Block diagram of FS_DIO_ShortToSupplySet_IMXRT() function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_IMXRT(fs_dio_test_imx_t *pTestedPin, bool_t shortToVoltage, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short to the GND is tested, the parameter must have a
non-zero value (and the other way around).

#define DIO_SHORT_TO_GND_TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
65 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_IMXRT(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_IMXRT(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the GPIO input before calling the function. If the backup functionality is
enabled, the function sets the input direction for the tested pin. If not, configure the input direction. After the end
of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt_IMXRT() function is
called for the tested pin.

4.2.17 FS_DIO_InputExt_LPC()

This is a modified version of the previously mentioned digital input test. This version is used as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a GPIO input and you know what
logical level is expected at the time of the test. The logical level can either result from the actual configuration in
the application or it can be initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_LPC()
function is shown in Figure 21. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
66 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 21. Extended digital input test for LPC devices

Function prototype:

FS_RESULT FS_DIO_InputExt_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
67 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.
• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set - only for a specific LPC device.

Function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Configure the tested pin as a GPIO input before the function call. Even if no adjacent pins are involved in the
test, specify the AdjacentPin parameter. It is recommended to enter the same input as for the TestedPin.

4.2.18 FS_DIO_Output_LPC()

This test tests the digital output functionality of the pin. The principle of the test is to set up and read both logical
values on the tested pin. A suitable delay parameter must be entered. It must ensure a time interval that is long
enough for the device to reach the desired logical value on the pin. A very low delay parameter causes the "fail"
return value of the function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
68 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 22. Block diagram for digital output test

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
69 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output_LPC(fs_dio_test_lpc_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.
• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.
• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.
• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set - only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_LPC(&dio_safety_test_items[1],
 DIO_WAIT_CYCLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.19 FS_DIO_ShortToAdjSet_LPC()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 23. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_LPC() function is described in the respective section. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
70 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 23. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
71 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.
• FS_FAIL_DIO_MODE - The tested or adjacent pins do not have the "digimode" set - only for specific LPC

devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0], &dio_safety_test_items[1],
 LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pins must be configured as GPIO outputs
before calling the function. If the backup functionality is enabled, the function sets the directions for both pins.
If not, configure the directions (tested pin as input, adjacent pin as output). After the end of the function, the
application can manipulate neither the tested nor the adjacent pins until the FS_DIO_InputExt_LPC() function is
called for these pins.

4.2.20 FS_DIO_ShortToSupplySet_LPC()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between
the tested pin and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware
ground (GND). Its block diagram is shown in Figure 24. The second part of the test (result evaluation) is
ensured by the FS_DIO_InputExt_LPC() function described in the respective section. The main purpose of the
FS_DIO_InputExt_LPC() function is to set the pull-up or pull-down resistor connections on the tested pin. It also
tests whether the pin is correctly configured and makes a backup of its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
72 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 24. Block diagram of FS_DIO_ShortToSupplySet_LPC function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_LPC(fs_dio_test_lpc_t *pTestedPin, bool_t shortToVoltage, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
73 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set, only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short to GND is tested, the parameter must have a
non-zero value (and the other way around).

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is
enabled, the function sets the input direction for the tested pin. If not, configure the input direction. After the end
of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt_LPC() function is
called for the tested pin.

4.2.21 FS_DIO_InputExt_RGPIO()

This is a modified version of the previously mentioned digital input test. Use this version as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a RGPIO input and you know
what logical level is expected at the time of the test. The logical level results from the actual configuration in
the application or it is initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_RGPIO()
function is shown in Figure 25. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
74 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 25. Extended digital input test for IMX RGPIO

Function prototype:

FS_DIO_InputExt_RGPIO(fs_dio_test_rgpio_t *pTestedPin, fs_dio_test_rgpio_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.
• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_item_0,
 &dio_safety_test_item_0, DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
75 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral. Configure the tested pin as an RGPIO
input before calling the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin"
parameter. It is recommended to enter the same input as for "TestedPin".

4.2.22 FS_DIO_ShortToAdjSet_RGPIO()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 26. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_RGPIO() function is described in the respective chapter. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
76 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 26. Block diagram of FS_DIO_ShortToAdjSet_RGPIO() function

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
77 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_RGPIO(fs_dio_test_rgpio_t *pTestedPin, fs_dio_test_rgpio_t *pAdjPin,
bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.
• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result =
 FS_DIO_ShortToAdjSet_RGPIO(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);
dio_short_to_adj_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
 &dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral.

The tested pin must be configured as an RGPIO input and the adjacent pin must be configured as an RGPIO
output before calling the function. If the backup functionality is enabled, the function sets the directions
for both pins. If not, configure the directions (tested pin as input, adjacent pin as output). After the end
of the function, the application cannot manipulate neither the tested pin nor the adjacent pin until the
FS_DIO_InputExt_RGPIO() function is called for these pins.

4.2.23 FS_DIO_ShortToSupplySet_RGPIO()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the
tested pin and the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 27. The second part of the test (result evaluation) is ensured
by the FS_DIO_InputExt_RGPIO() function described in the respective section. The main purpose of the
FS_DIO_InputExt_RGPIO() function is to set the pull-up or pull-down resistor connections on the tested pin. It
also ensures that the pin is correctly configured and makes a backup of its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
78 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 27. Block diagram of FS_DIO_ShortToSupplySet_RGPIO() function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_RGPIO(fs_dio_test_rgpio_t *pTestedPin, bool_t shortToVoltage,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short to the GND is tested, the parameter must have a
non-zero value (and the other way around).

#define DIO_SHORT_TO_GND_TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
79 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_RGPIO(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);
dio_short_to_vcc_test_result =
 FS_DIO_ShortToSupplySet_RGPIO(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
 BACKUP_ENABLE);
dio_short_to_vcc_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
 &dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral.

The tested pin must be configured as the RGPIO input before calling the function. If the backup functionality is
enabled, the function sets the input direction for the tested pin. If not, configure the input direction. After the end
of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt_RGPIO() function is
called for the tested pin.

5 Invariable memory test

The invariable memory on the supported MCUs is the on-chip flash. The principle of the invariable memory
test is to check whether there is a change in the memory content during the application execution. Several
checksum methods can be used for this purpose. The checksum is an algorithm that calculates a signature of
the data placed in the tested memory. The signature of this memory block is then periodically calculated and
compared with the original signature.

The signature for the assigned memory is calculated in the linking phase of an application. The signature must
be saved into the invariable memory, but in a different area than the one that the checksum is calculated for.
In runtime and after the reset, the same algorithm must be implemented in the application to calculate the
checksum. The results are compared. If they are not equal, a safety error state occurs.

The algorithm that calculates the checksum parameter (signature) in the post build phase must be the same
as that used in runtime (16-bit CRC polynomial (0x1021) for SW16 and HW16 or 0x04C11DB7 for HW32 and
SW32) to generate a CRC code for error detection. The same algorithm is implemented in the hardware CRC
module. In the IAR IDE, you can calculate the CRC using the linker. In other IDEs, you can use an external tool.
For the Keil uVision IDE, see Calculating Post-Build CRC in Arm

®
 Keil

®
 (document AN12520).

Some MCUs have a hardware CRC engine which provides an easy method of calculating the CRC of multiple
bytes/words written to it. Using hardware for the invariable memory test offers better performance levels. The
software version of the test must be used on devices without a CRC hardware module.

5.1 Invariable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in Table 17.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
80 / 140

https://www.nxp.com/doc/AN12520

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Invariable memory 4.1 – Invariable
memory

All single bit faults B/R.1 Periodic modified
checksum

Table 17. Invariable memory test in compliance with IEC and UL standards

5.2 Invariable memory test implementation
The parts of test functions for the flash memory are placed in iec60730b_cm4_cm7_flash.S and they
are written as assembler functions. The header file with the definitions and function prototypes is
iec60730b_cm4_cm7_flash.h. The rest of functions is placed in iec60730b_invariable_memory.c with the
corresponding header file and they are written in the C language. The test functions use also the following
header files: iec60730b.h, asm_mac_common.h, and iec60730b_types.h. They are the common header files for
the safety library.

The following functions are implemented in iec60730b_invariable_memory.c:

• FS_FLASH_C_HW16_K() / FS_FLASH_C_HW16_K()/FS_CM4_CM7_FLASH_HW32_DCP()

The following functions are implemented in iec60730b_cm4_cm7_flash.S:

• FS_CM4_CM7_FLASH_HW16()
• FS_CM4_CM7_FLASH_SW16()
• FS_CM4_CM7_FLASH_SW32()

The hardware (*_HW) functions use the hardware CRC module that is included in the supported MCU. The
software function calculates the CRC value without hardware support, so it has longer execution time.

5.2.1 Computing of CRC value in linking phase of application

The checksum of a memory block must be calculated before it is written into the flash memory. A checksum
calculation is best done with a linker. However, this is not possible in all compilers. The following example is
valid only for the IAR IDE. For further details, refer to the IAR documentation. For using external tools in the
Keil-uVision IDE, see Calculating Post-Build CRC in Arm

®
 Keil

®
 (document AN12520).

The result of the CRC calculation must be stored in the flash memory. It must not be stored in the area where
the checksum occurs. A good method is to define a small block in the flash (ROM) memory where the result
of the checksum is stored. To do this, the linker configuration file must be modified. The path to the linker
configuration file can be found in: Project > Options > Linker > Config. The file name extension is *.icf. For this
example, the "CHECKSUM" block with the ".checksum" section is defined.

define symbol __FlashCRC_start__ = 0x6FF0;
define symbol __FlashCRC_end__ = 0x6FFF;
define region CRC_region = mem:[from __FlashCRC_start__ to __FlashCRC_end__] ;
define block CHECKSUM { section .checksum };
place in CRC_region { block CHECKSUM };

The input parameters for the CRC calculation must be set up in the linker option tabs: Project > Options >
Linker. There are two options for setting up the calculation parameters. The first option is used to calculate the
checksum for one block of memory in your application. The parameters are filled in the "Checksum" subtab. For
this example, the start and end addresses are 0x510 and 0x3000. The unused memory is filled with 0xFF. The
checksum is stored with 16 bits. The checksum algorithm is CRC16 with the standard 0x1021 polynomial. The
initial seed is zero. The block size for a particular calculation is 8 bits. The variable for the result is __checksum.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
81 / 140

https://www.nxp.com/doc/AN12520

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 28. Checksum settings for linker

The constant variable name (__checksum) must be written into Project > Options > Linker > Input > Keep
symbols.

The following lines must be placed into the source code, to have the __checksum variable available in the
application.

#pragma section = ".checksum"
#pragma location = ".checksum"
extern unsigned short const __checksum;

If you need a CRC calculation for more memory blocks, use the following approach. There must be enough
space in the block defined in the linker configuration file. For this example, the parameters for the calculations
are the same as in the previous example and the addresses of blocks are: (0x510 – 0x610, 0x620 – 0x720,
0x730 – 0x830). The variables are as follows: (__checksum_first, __checksum_second, __checksum_third).
In this case, the linker command line directives are used: Project > Options > Linker > Extra Options. Use the
command line options and enter the following lines there. Uncheck the options in the "Checksum" subtab.

—fill 0xFF;0x510-0x610
—checksum __checksum_first:2,crc16,0x0;0x510-0x610
—place_holder __checksum_first,2,.checksum,4
—fill 0xFF;0x620-0x720
—checksum __checksum_second:2,crc16,0x0;0x620-0x720
—place_holder __checksum_second,2,.checksum,4
—fill 0xFF;0x730-0x830
—checksum __checksum_third:2,crc16,0x0;0x730-0x830
—place_holder __checksum_third,2,.checksum,4

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
82 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Project > Options > Linker > Input

Write the following to the "Keep symbols" block:

__checksum_first
__checksum_second
__checksum_third

Add the following lines to the source code, so that the __checksum_first, __checksum_second, and
__checksum_third variables are available in the application.

#pragma section = ".checksum"
#pragma location = ".checksum"
extern unsigned short const __checksum_first;
extern unsigned short const __checksum_second;
extern unsigned short const __checksum_third;

5.2.2 Test performed once after MCU reset

When implemented after the reset or when there is no restriction on the execution time, the function call can be
as follows:

#include “iec60730b.h”
#pragma section = ".checksum"
#pragma location = ".checksum"
 extern uint16_t const __checksum;
if((uint16_t)__checksum != FS_CM4_CM7_FLASH_HW16(start_address, size,
 CRC_BASE,start_seed))SafetyError();

Where:

• __checksum - The constant variable with the CRC value computed in the linking phase of the application.
• start_address - The initial address of the memory block to be tested.
• size - The size of the memory block to be tested (first address – end address + 1).
• CRC_BASE - The base address of the CRC module.
• start_seed - The start condition seed. It must be "0" for the algorithm used.

5.2.3 Runtime test

In the application runtime and with limited time for execution, the CRC is computed in a sequence. It means that
the input parameters have different meanings in comparison with the calling after reset. The implementation
example is as follows:

#include “iec60730b.h”
#pragma section = ".checksum"
#pragma location = ".checksum"
 extern unsigned short const __checksum;
flash_crc.part_crc = FS_CM4_CM7_FLASH_HW16(flash_crc.actual_address,
 flash_crc.block_size, CRC_BASE, flash_crc.part_crc);
if (FS_FAIL_FLASH == SafetyFlashTestHandling(__checksum, &flash_crc))
SafetyError();

Where:

• __checksum - The constant variable with the CRC value computed in the post-build phase of the application.
• flash_crc.part_crc - The particular CRC result and seed parameter for the next iteration.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
83 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• flash_crc.actual_address - The actual address of the memory block to be tested.
• CRC_BASE - The base address of the CRC module.
• flash_crc.block_size - The size of the memory block to be tested.

The handling of the function must be carried out by the application developer. When the checksum of a
block is calculated in more iterations, the result from the first iteration (function call) is the seed value for the
next function call. After the last part of the memory is processed with the test function, the result is the final
checksum of the whole tested memory block.

5.2.4 FS_FLASH_C_HW16_K()

This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

FS_RESULT FS_FLASH_C_HW16_K(uint32_t startAddress, uint32_t size, FS_CRC_Type * moduleAddress,
uint16_t * crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory. It must be divisible by 4.

moduleAddress - The address of the CRC module.

crcVal - Pointer to the variable for the result and start condition seed. For the first iteration, it is typically a user-
defined value. For the next iterations, it is the result from the previous function call (The CRC module must be
initialize to: CRC-16-CCITT - normal 0x1021).

Function output:

FS_RESULT

• FS_FAIL_FLASH_NULL_POINTER_C - The moduleAddress or crcVal input parameters are NULL.
• FS_FAIL_FLASH_MODULO_C - The parameter size is not aligned to 4 bytes.
• FS_FAIL_FLASH_SIZE_C - The size input parameter is 0.

Function performance:

The function parameter was measured on LPC55S36 with a clock frequency of 150 MHz.

The function size is 96 B.

The function duration depends on the defined block size. Several examples are shown in Table 18:

Block size (in bytes) Execution time (approximately)

0x10 1,6 µs

0x20 1,92 µs

0x100 6,68 µs

Table 18. Duration of FS_FLASH_C_HW16_K() depending on tested block size

Calling restrictions:

The CRC module must be correctly configured to calculate normal 0x1021 CRC before calling this function. The
function cannot be interrupted by a function that changes the content or setup of the hardware CRC module.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
84 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

5.2.5 FS_FLASH_C_HW16_L()

This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

FS_RESULT FS_FLASH_C_HW16_L(uint32_t startAddress, uint32_t size, FS_CRC_L_Type * moduleAddress,
uint16_t * crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

crcVal - Pointer to the variable for the result and start condition seed. For the first iteration, it is typically a user-
defined value. For the next iterations, it is the result from the previous function call (CRC-16-CCITT - normal
0x1021).

Function output:

FS_RESULT

• FS_FAIL_FLASH_NULL_POINTER_C - The moduleAddress or crcVal input parameters are NULL.
• FS_FAIL_FLASH_SIZE_C - The size input parameter is 0.

Function performance:

The function parameter was measured on LPC54S018M with a clock frequency of 96 MHz.

The function size is 66 B.

The function duration depends on the defined block size. Several examples are shown in Table 19:

Block size (in bytes) Execution time (approximately)

0x10 14,36 µs

0x20 18,04 µs

0x100 44,12 µs

Table 19. Duration of FS_FLASH_C_HW16_L() depending on tested block size

Calling restrictions:

The function cannot be interrupted by a function that changes the content or setup of the hardware CRC
module.

5.2.6 FS_CM4_CM7_FLASH_HW32_DCP()

This function generates the 32-bit CRC value using the hardware DCP module.

Function prototype:

void FS_CM4_CM7_FLASH_HW32_DCP(uint32_t startAddress, uint32_t size, uint32_t moduleAddress,
uint32_t crcVal, fs_flash_dcp_channels_t channel, fs_flash_dcp_state_t *psDCPState, uint32_t tag);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
85 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

crcVal - The starting condition seed. For the first iteration, it is typically a user-defined value. For the next
iterations, it is the result from the previous function call).

channel - The DCP channel used for calculation.

psDCPState - The state and result structures of each DCP channel.

tag - Differentiates the calculation on the same channel.

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Example of function call:

 /* CRC calculation of SAFETY_FLASH_BLOCK (channel should be available after
 reset) */
 do
 {
 FS_CM4_CM7_FLASH_HW32_DCP(psFlashConfig->startAddress, psFlashConfig-
>size, (uint32_t)FLASH_USED_DCP,
 psFlashConfig->startConditionSeed,
 g_dcpSafetyChannel, psFlashDCPState,
 FLASH_DCP_TAG);

 /* Check error. */
 if (psFlashDCPState->CH3State == FS_FAIL_FLASH_DCP)
 {
 psSafetyCommon->safetyErrors |= FLASH_TEST_ERROR;
 SafetyErrorHandling(psSafetyCommon);
 }
 } while (psFlashDCPState->CH3State == FS_FLASH_DCP_BUSY);

 /* Store the result */
 psSafetyCommon->FLASH_test_result = psFlashDCPState->CH3Result;

 /* Check if result equals precomputed CRC value */
 if (psSafetyCommon->FLASH_test_result != psFlashConfig->checksum)
 {
 psSafetyCommon->safetyErrors |= FLASH_TEST_ERROR;
 SafetyErrorHandling(psSafetyCommon);
 }

Function performance:

The function size is 448 bytes.4

The function duration depends on the defined block size. Several examples are shown in the following table.

Block size (bytes) Clock cycles Execution time (approximately)

0x10 57 2.375 µs

0x20 57 2.375 µs

0x50 67 2.791 µs

0x500 261 10.875 µs

Table 20. Duration of FS_CM4_CM7_FLASH_HW32_DCP() in dependence of tested block size

Calling restrictions:

The function cannot be interrupted with a function that changes the content or setup of the HW DCP module.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
86 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Multiple calculations with different tag number on the same channel are supported, but they must be placed in
the same execution block - for example, channel 0 calculations in the Systick ISR and channel 1 calculations in
the while loop.

The calculated data block must be aligned to 4 bytes.

5.2.7 FS_CM4_CM7_FLASH_HW16()

This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

uint16_t FS_CM4_CM7_FLASH_HW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t
crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations,
it is the result from the previous function call).

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

Function size is 44 bytes.1

The function duration depends on defined block size. Several examples are shown in the following table.

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 208 2.6 µs

0x20 343 4.2 µs

0x50 745 9.3 µs

Table 21. Duration of FS_CM4_CM7_FLASH_HW16() in dependence of tested block size

Calling restrictions:

The function cannot be interrupted with function that changes the content or setup of HW CRC module.

5.2.8 FS_CM4_CM7_FLASH_SW16()

This function generates the 16-bit CRC value using software.

Function prototype:

uint16_t FS_CM4_CM7_FLASH_SW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t
crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - Has no effect. Just because of compatibility with HW function.
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
87 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations,
it is the result from the previous function call).

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

Function size is 54 bytes.1

The function duration depends on defined block size. Several examples are shown in the following table.

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 1934 24.175 µs

0x20 3936 49.2 µs

0x50 9758 121.975 µs

Table 22. Duration of FS_CM4_CM7_FLASH_SW16() in dependence of tested block size

Calling restrictions:

None.

5.2.9 FS_CM4_CM7_FLASH_SW32()

This function generates the 32-bit CRC value using software.

Function prototype:

uint32_t FS_CM4_CM7_FLASH_SW32(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint32_t
crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - Has no effect. Just because of compatibility with HW function.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations,
it is the result from the previous function call).

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Function performance:

Function size is 78 bytes.1

The function duration depends on defined block size. Several examples are shown in the following table.

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 1795 22.438 µs

0x20 3631 45.388 µs

0x50 9030 112.875 µs

Table 23. Duration of FS_CM4_CM7_FLASH_SW32() in dependence of tested block size

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
88 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Calling restrictions:

None.

6 CPU program counter test

The CPU program counter register test procedure tests the CPU program counter register for the stuck-at
condition. The program counter register test can be performed once after the MCU reset and also during
runtime.

The identification of the safety error is ensured by the specific FAIL return if the CPU program counter register
does not work correctly. Assess the return value of the test function. If it is equal to the FAIL return, then the
jump into the safety error handling function occurs. The safety error handling function may be specific to the
application and it is not a part of the library. The main purpose of this function is to put the application into a
safety state.

Contrary to the other CPU registers, the program counter cannot be simply filled with a test pattern. It is
necessary to force the CPU (program flow) to access the corresponding address that is testing the pattern to
verify the program counter functionality.

The program counter test works without an initialization function. The short function (another object) is written
in a separate file. Place this object to an appropriate address in the flash memory by declaring it in the linker
configuration file. The test function uses the address of this routine and the appropriate address in the RAM
memory to test the program counter.

The block diagrams for the program counter register tests are shown in this figure:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
89 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 29. Block diagram for PC_Test

6.1 CPU program counter test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in this table:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
90 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU CPU (1.3 –
Programme Counter)

Stuck at B/R.1 Periodic self test

Table 24. CPU program counter test in compliance with IEC/UL standards

6.2 CPU program counter test implementation
The test functions for the CPU registers are placed in the iec60730b_cm4_cm7_pc.S file and they are
written as assembler functions. The header file with the test patterns and the function prototypes is
iec60730b_cm4_cm7_pc.h. The iec60730b.h, asm_mac_common.h, and iec60730b_types.h are the common
header files for the safety library. For the second test type, the iec60730b_cm4_cm7_pc_object.S file must be
placed to an appropriate address in the flash memory.

Implementation example of the PC test:

The only function that is handled in the application is as follows:

FS_CM4_CM7_PC_Test()

Place an appropriate pattern as the first input. If needed, call the function more times in a sequence with
different patterns. Note that the test pattern must be a real address in the RAM and it must be even-numbered.
Place the iec60730b_cm4_cm7_pc_object.S file to an appropriate address in the flash memory.

The following is an example of the function call:

#include “iec60730b.h”
extern unsigned long PC_test_flag; /* from Linker configuration file */
const unsigned long Program_Counter_test_flag = (unsigned long)&PC_test_flag;
#define PC_TEST_FLAG ((unsigned long *) Program_Counter_test_flag)
fs_pc_test_result = FS_CM4_CM7_PC_Test(0x20000013, FS_PC_object, PC_TEST_FLAG);
if (FS_FAIL_PC == fs_pc_test_result)
 SafetyError();

6.2.1 FS_CM4_CM7_PC_Test()

The program counter register is tested according to Figure 29.

Function prototype:

FS_RESULT FS_CM4_CM7_PC_Test(uint32_t pattern1, tFcn_pc pObjectFunction, uint32_t *flag);

Function inputs:

pattern1 - The address from the RAM memory, adequate as a pattern for the program counter.

pObjectFunction - The address of the FS_PC_Object() function.

*pFlag - The address of the variable/place in memory used as a flag. If the flag is "0", the test is successful ("1"
if it failed).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_PC - In the case of incorrect test execution, PC_flag has a value of "1".

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
91 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The function takes approximately 92 cycles (1.15 µs).1

The function size is 48 B.1

Calling restrictions:

This function cannot be interrupted.

6.2.2 FS_PC_Object()

This function is internally used by the FS_CM4_CM7_PC_Test() function. The function is used to perform the
program counter test. It should be called only by the FS_CM4_CM7_PC_Test() function. It should be placed at a
reliable address (by editing the linker file).

This example shows how to place the function to the desired address in the linker configuration file for the IAR
IDE:

define symbol __PC_test_start__ = 0x00008FE0;
define symbol __PC_test_end__ = 0x00008FFF;
define region PC_region = mem:[from __PC_test_start__ to __PC_test_end__];
define block PC_TEST { section .text object iec60730b_cm4_cm7_pc_object.o};
place in PC_region { block PC_TEST};

Function prototype:

void FS_PC_Object(void);

Function inputs:

void

Function output:

void

Function performance:

The function duration is included in the duration of the FS_CM4_CM7_PC_Test() function. It's size is 16 bytes.

Calling restrictions:

This function is used to perform the PC test, it should be called only by the FS_CM4_CM7_PC_Test() function.

7 Variable memory test

The variable memory test for supported devices checks the on-chip RAM for DC faults. The application stack
area can also be tested. The March C and March X schemes are used as control mechanisms. Choose
whether to use the March C or March X scheme. The handling functions are different for the after-reset test
and for the runtime test. Both functions must have a backup area defined in the RAM and reserved by the
developer. The size of this area must be at least the same as the size of the tested block. The RAM test is
considered destructive. This is because the data from the memory area with the variables, the stack area, and
the functions placed in the RAM is moved away, rewritten multiple times (with test patterns 0x55555555 and
0xAAAAAAAA), and then moved back to the original memory area. The test procedure is very sensitive and
cannot be interrupted. The block diagrams for the RAM tests are shown in the following figures:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
92 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 30. Block diagram for after-reset test of RAM

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
93 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 31. Block diagram for runtime test of RAM

7.1 Variable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in the following table:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
94 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Variable memory 4.2 – Variable memory DC fault B/R.1 Periodic self-test using
March test

Table 25. Variable memory test in compliance with IEC and UL standards

7.2 Variable memory test implementation
The test functions for the variable memory (RAM) test are placed in the iec60730b_cm4_cm7_ram.S file
and they are written as assembler functions. The header file with return values and function prototypes is
iec60730b_cm4_cm7_ram.h. The iec60730b.h, asm_mac_common.h, and iec60730b_types.h are the common
header files for the safety library.

The RAM test consists of these public functions:

• FS_CM4_CM7_RAM_AfterReset()
• FS_CM4_CM7_RAM_Runtime()
• FS_CM4_CM7_RAM_CopyToBackup()
• FS_CM4_CM7_RAM_CopyFromBackup()
• FS_CM4_CM7_RAM_SegmentMarchC()
• FS_CM4_CM7_RAM_SegmentMarchX()

The first two functions provide a complex RAM test. You do not have to work directly with the next functions.

7.2.1 FS_CM4_CM7_RAM_AfterReset()

The after-reset test is done by the FS_CM0_RAM_AfterReset() function. This function is called once after
reset, when the execution time is not critical. Reserve free memory space for the backup area. The block size
parameter cannot be larger than the size of the backup area. The function firstly checks the backup area. Then
the loop begins. Blocks of memory are copied to the backup area and their locations are checked with the
respective March test. The data is copied back to the original memory area and the actual address with the
block size is updated. This is repeated until the last block of memory is tested. If a DC fault is detected, the
function returns a fail pattern. The block diagram is shown in .Figure 30

Here is an example of the function call:

#include “iec60730b.h”
if (FS_FAIL_RAM == FS_CM4_CM7_RAM_AfterReset(startAddress, endAddress,
 blockSize, backupAddress, FS_CM4_CM7_RAM_SegmentMarchC))
SafetyError();

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_AfterReset(uint32_t startAddress, uint32_t endAddress, uint32_t blockSize,
uint32_t backupAddress, tFcn pMarchType);

Function inputs:

startAddress - The first adress of the tested RAM area.

endAddress - The address of the first byte after the tested RAM area.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
95 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_RAM

Function performance:

The function size is 98 B.1

The execution time depends on the memory size. It also varies with different block sizes and the March method
used.1

Memory size(Bytes) Block size(Bytes) Cycles - March X Cycles – March C

0x100 0x20 3831 5238

0x100 0x40 3842 5360

0x100 0x80 4095 5882

0x200 0x20 7310 9926

0x200 0x40 6839 9534

0x200 0x80 7346 10298

0x400 0x20 13791 18838

0x400 0x40 13574 18638

0x400 0x80 13095 18382

Table 26. FS_CM4_CM7_RAM_AfterReset duration

Calling restrictions:

This function is used once after the MCU reset, when the execution time is not critical.

It cannot be interrupted.

The backup area must be of at least the same size as the tested block size defined by the "block_size"
parameter.

7.2.2 FS_CM4_CM7_RAM_Runtime()

The runtime test is done by the FS_CM4_CM7_RAM_Runtime() function. Reserve free memory space for the
backup area. The block size parameter cannot be larger than the size of the backup area. During the first call,
the function checks the backup area. After the call, blocks of memory are processed in a sequence. They are
copied to the backup area and their locations are checked using the respective March test. The data is copied
back to the original memory area and the actual address and the block size are updated. This is repeated until
the last block of memory is tested. If a DC fault is detected, the function returns a fail pattern. The block diagram
is shown above. The example of a function call is as follows:

#include “iec60730_b.h”
if(FS_RAM_FAIL == FS_RESULT FS_CM4_CM7_RAM_Runtime(startAddress, endAddress,
 &actualAddress, blockSize, backupAddress, FS_CM4_CM7_RAM_SegmentMarchX))
SafetyError();

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_Runtime(uint32_t startAddress, uint32_t endAddress, uint32_t
*pActualAddress, uint32_t blockSize, uint32_t backupAddress, tFcn pMarchType);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
96 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function inputs:

startAddress - The first adress of the tested RAM area.

endAddress - The address of the first byte after the tested RAM area.

*pActualAddress - The adress of the variable that holds the actual address value.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_RAM

Function performance:

The function size is 118 B.1

The execution time depends on the block size and it is different for the March C and March X methods. 1

Block size(Bytes) Cycles - March X Cycles - March C

0x4 202 187

0x8 250 298

0x20 532 688

0x40 908 1208

Table 27. FS_CM4_CM7_RAM_Runtime duration

Calling restrictions:

The function cannot be interrupted.

The backup area must have at least the same size as the tested block size defined by the block_size
parameter.

The execution time depends on the block size.

7.2.3 FS_CM4_CM7_RAM_CopyFromBackup()

This function copies a block of memory from the backup area to the dedicated place.

Function prototype:

void FS_CM4_CM7_RAM_CopyFromBackup(uint32_t startAddress, uint32_t blockSize, uint32_t
backupAddress);

Function inputs:

startAddress - The first adress of the destination.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
97 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

void

Function performance:

The function size is 16 B.1

7.2.4 FS_CM4_CM7_RAM_CopyToBackup()

This function copies a block of memory to the dedicated backup area.

Function prototype:

void FS_CM4_CM7_RAM_CopyToBackup(uint32_t startAddress, uint32_t blockSize, uint32_t backupAddress);

Function inputs:

startAddress - The first address of the source.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

void

Function performance:

The function size is 16 B.1

7.2.5 FS_CM4_CM7_RAM_SegmentMarchC()

This function performs a March C test of the memory block that is given by the start address and the block size.
The content of the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_SegmentMarchC(uint32_t startAddress, uint32_t blockSize);

Function inputs:

startAddress - The first adress of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_RAM

Function performance:

The function size is 118 B.1

7.2.6 FS_CM4_CM7_RAM_SegmentMarchX()

This function performs a March X test of the memory block that is given by the start address and the block size.
The content of the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_SegmentMarchX(uint32_t startAddress, uint32_t blockSize);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
98 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function inputs:

startAddress - The first adress of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_RAM

Function performance:

The function size is 98 B.1

8 CPU register test

The CPU register test procedure tests all of the CM4/CM7 CPU registers for the stuck-at condition (except for
the program counter register). The program counter test is implemented as a standalone safety routine. There is
a set of tests performed once after the MCU reset and also during runtime. This set of tests includes the test of
the following registers:

General-purpose registers:

• R0-R12

Stack pointer registers:

• SP main
• SP process

Special registers:

• APSR
• CONTROL
• PRIMASK
• FAULTMASK
• BASEPRI

Link register:

• LR

FPU registers:

• FPSCR
• S0 – S31

The identification of safety errors is ensured by the specific FAIL return if some registers have the stuck-at fault.
Assess the return value of every function. If the value equals the FAIL return, then a jump into the safety error
handling function should occur. The safety error handling function may be specific to the application and it is not
a part of the library. The main purpose of this function is to put the application into a safe state.

In some special cases, the error is not reported by the FAIL return, because it would require the action of a
corrupt register. In that case, the function waits for reset in an endless loop.

The principle of the stuck-at error test of the CPU registers is to write and compare two test patterns in every
register. The content of the register is compared with the constant or with the value written into another register

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
99 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

that was tested before. Most of the time, R0, R1, and R2 are used as auxiliary registers. Patterns are defined to
check the logical one and logical zero values in all register bits.

For the PRIMASK and CONTROL and FAULTMASK and BASEPRI tests, the original content must be backed
up. For the SP_main and SP_process tests, the CONTROL register content must be backed up. In case of the
FPU registers test, the content of the FPSCR is backed up. The CPACR system register contains one bit for
enabling the FPU. The block diagrams for the respective registers are shown in the following figures:

Figure 32. Block diagram for R2 – R12 registers test

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
100 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 33. Block diagram for R0, R1, LR, APSR registers test

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
101 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 34. Block diagram for PRIMASK , FAULTMAST, BASEPRI and CONTROL registers test

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
102 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 35. Block diagram for SP_main and SP_process registers test

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
103 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 36. Block diagram for FPSCR register test

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
104 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 37. Block diagram for S0 - S31 registers test

8.1 CPU register test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in the following table:

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU registers test CPU (1.1 – Registers) Stuck at B/R.1 Periodic self test

Table 28. CPU register test in compliance with IEC and UL standards

8.2 CPU register test implementation
The test functions for the CPU registers are in the iec60730b_cm4_cm7_reg.S file and they are written as
assembler functions. For devices containing the FPU, iec60730b_ cm4_cm7_reg_fpu.S is an additional file with
tests of FPU-related registers.

The header file with the return values and function prototypes is iec60730b_cm4_cm7_reg.h.

The iec60730b.h, asm_mac_common.h, and iec60730b_types.h files are the common header files for the safety
library.

The following functions are called to test the corresponding registers:

• FS_CM4_CM7_CPU_Register()
• FS_CM4_CM7_CPU_NonStackedRegister()
• FS_CM4_CM7_CPU_Primask()
• FS_CM4_CM7_CPU_SPmain()
• FS_CM4_CM7_CPU_SPprocess()
• FS_CM4_CM7_CPU_Control()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
105 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

• FS_CM4_CM7_CPU_Special()
• FS_CM4_CM7_CPU_Special8PriorityLevels()

When the device has an FPU, the following functions are placed in the iec60730b_cm4_cm7_reg_fpu.S file:

• FS_CM4_CM7_CPU_ControlFpu()
• FS_CM4_CM7_CPU_Float1()
• FS_CM4_CM7_CPU_Float2()

Error detection is recognized by a specific return value, as described in the following sections. There are several
exceptions. If some of the R0, R1, LR, APSR, and SP registers are corrupt, the application is in an endless
loop instead of returning an error value. If some of these registers are corrupt, the application cannot make
standard operations to identify the safety error (to compare something, to move out from the function, or to
return a value).

The use of functions after the reset and during runtime is the same. Be careful when using functions during
runtime, as described in the following sections.

The following is an example of a function call:

#include “iec60730b.h”
if (FS_FAIL_CPU_REGISTER == FS_CM4_CM7_CPU_Register())
SafetyError();

8.2.1 FS_CM4_CM7_CPU_Control()

This function tests the CONTROL register according to the Figure 34.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Control(void);

Test pattern:

CONTROL: 0x00000000, 0x00000002

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 30 cycles, including the result comparison (0.375 µs). 1

The function size is 48 B.1

Calling restrictions:

This function cannot be interrupted and it must be called in the thread mode (not in the handler mode).

8.2.2 FS_CM4_CM7_CPU_ControlFpu()

This function tests the CONTROL register according to the Figure 34.

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
106 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

FS_RESULT FS_CM4_CM7_CPU_ControlFpu(void);

Test pattern:

CONTROL: 0x00000000, 0x00000002, 0x00000004

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 52 cycles, including the result comparison (0.65 µs). 1

The function size is 62 B.1

Calling restrictions:

This function cannot be interrupted and it must be called in the thread mode (not in the handler mode).

This function should be used for devices with FPU, as a replace of the FS_CM4_CM7_CPU_Control() function.

8.2.3 FS_CM4_CM7_CPU_Float1()

This function checks the FPSCR and S0-S15 registers according to the Figure 36to the Figure 37. Within the
function, the FPU is enabled in the CPACR register. At the end of the function, the original content of CPACR is
restored.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Float1(void);

Test patterns for respective registers:

FPSCR: 0x55400015, 0xA280008A

S0-S15: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_FLOAT_1

Function performance:

The function takes approximately 286 cycles (3.575 µs). 1

The function size is 476 B.1

Calling restrictions:

Only for devices with the Floating Point Unit (FPU).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
107 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

8.2.4 FS_CM4_CM7_CPU_Float2()

This function checks the S16-S31 registers according to the Figure 37. Within the function, the FPU is enabled
in the CPACR register. At the end of the function, the original content of CPACR is restored.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Float2(void);

Test patterns for respective registers:

S0-S15: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_FLOAT_2

Function performance:

The function takes approximately 270 cycles (3.375 µs). 1

The function size is 470 B.1

Calling restrictions:

Only for devices with the Floating Point Unit (FPU).

8.2.5 FS_CM4_CM7_CPU_NonStackedRegister()

This function tests the R8, R9, R10, and R11 CPU registers. Each register is tested according to the Figure 32.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_NonStackedRegister(void);

Test patterns for respective registers:

R8 – R11: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_NONSTACKED_REGISTER

Function performance:

The function takes approximately 70 cycles, including the result comparison (0.875 µs). 1

The function size is 80 B.1

Calling restrictions:

None.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
108 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

8.2.6 FS_CM4_CM7_CPU_Primask()

This function tests the PRIMASK register according to the Figure 34.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Primask(void);

Test pattern:

PRIMASK: 0x00000001, 0x00000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_PRIMASK

Function performance:

The function takes approximately 221 cycles, including the result comparison (2.763 µs). 1

The function size is 44 B.1

Calling restrictions:

This function cannot be interrupted by an interrupt where the global interrupts are disabled.

8.2.7 FS_CM4_CM7_CPU_Register()

This function tests the R0-R7, R12, LR, and APSR CPU registers in a sequence. Each register is tested
according to the Figure 32to the Figure 33.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Register(void);

Test patterns for respective registers:

R0 – R7, R12, LR: 0x55555555, 0xAAAAAAAA

APSR: 0x50000000, 0xA0000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_REGISTER

If the R0, R1, LR, or APSR registers are corrupted, the function is in an endless loop with the interrupts
disabled. This state must be observed by another safety mechanism (for example, watchdog).

Function performance:

Function duration is approximately 172 cycles including result comparison (2.15 µs) 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
109 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function size is 204 bytes.1

Calling restrictions:

None.

8.2.8 FS_CM4_CM7_CPU_Special()

This function tests the BASEPRI and FAULTMASK registers according to the Figure 34.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Special(void);

Test pattern:

BASEPRI: 0xA0, 0x50

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_SPECIAL

Function performance:

The function takes approximately 61 cycles (0.763 µs). 1

The function size is 104 B.1

Calling restrictions:

None.

8.2.9 FS_CM4_CM7_CPU_Special8PriorityLevels()

This function tests the BASEPRI and FAULTMASK registers according to the Figure 34.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Special8PriorityLevels(void);

Test pattern:

BASEPRI: 0xA0, 0x40

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_CPU_SPECIAL

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
110 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function performance:

The function takes approximately 53 cycles (1.104 µs). 6

The function size is 84 B.x

Calling restrictions:

For devices with eight priority levels for interrupts.

8.2.10 FS_CM4_CM7_CPU_SPmain()

This function tests the SP_main register according to the Figure 35.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_SPmain(void);

Test pattern:

SP_main: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If SP_main is corrupted, the function is in an endless loop with the interrupts disabled. This state must be
observed by another safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 59 cycles, including the result comparison (0.738 µs) 1

The function size is 58 B.1

Calling restrictions:

This function cannot be interrupted.

8.2.11 FS_CM4_CM7_CPU_SPprocess()

This function checks SP_process register according to the Figure 35.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_SPprocess(void);

Test pattern:

SP_process: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
111 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

If the SP_process is corrupted, the function is in an endless loop with interrupts disabled. This state must be
observed by another safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 51 cycles, including the result comparison (0.638 µs) 1

The function size is 58 B.1

Calling restrictions:

This function cannot be interrupted.

9 Stack test

This test routine is used to test the overflow and underflow conditions of the application stack. The testing of the
stuck-at faults in the memory area occupied by the stack is covered by the variable memory test. The overflow
or underflow of the stack can occur if the stack is incorrectly controlled or by defining the "too-low" stack area for
the given application.

The principle of the test is to fill the area below and above the stack with a known pattern. These areas must
be defined in the linker configuration file, together with the stack. The initialization function then fills these areas
with your pattern. The pattern must have a value that does not appear elsewhere in the application. The test
is performed after the reset and during the application runtime in the same way. The purpose is to check if the
exact pattern is still written in these areas. If it is not, it is a sign of incorrect stack behavior. If this occurs, then
the FAIL return value from the test function must be processed as a safety error.

9.1 Stack test in compliance with IEC/UL standards
The stack test is an additional test, not directly specified in the IEC60730 annex H table.

9.2 Linker setup
The size and placement of the application stack is generally defined in the linker configuration file. Therefore,
you must define the areas below and under the stack here as well. There are other methods to achieve this, but
only one example is shown here. The size of the areas must be a multiple of 0x4. The minimal size is 0x4.

define symbol __ICFEDIT_region_RAM_start__ = 0x1FFFFC10;
define symbol __ICFEDIT_region_RAM_end__ = 0x20000000;
define symbol __region_RAM2_start__ = 0x20000000;
define symbol __region_RAM2_end__ = 0x200017FF;
define symbol __ICFEDIT_size_cstack__ = 512;
define exported symbol STACK_TEST_BLOCK_SIZE = 0x10;
define exported symbol STACK_TEST_P_4 = __region_RAM2_end__ - 0x3;
define exported symbol STACK_TEST_P_3 = STACK_TEST_P_4 - STACK_TEST_BLOCK_SIZE
 +0x4;
define exported symbol __BOOT_STACK_ADDRESS = STACK_TEST_P_3 - 0x4;
define exported symbol STACK_TEST_P_2 = __BOOT_STACK_ADDRESS -
 __ICFEDIT_size_cstack__ -0x4;
define exported symbol STACK_TEST_P_1 = STACK_TEST_P_2 - STACK_TEST_BLOCK_SIZE;
define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
 __region_RAM2_end__] - mem:[from STACK_TEST_P_1 size 0x10] - mem:[from
 STACK_TEST_P_3 size 0x10];
// ____________
// |____________| --> STACK_TEST_P_1ADR
// |____________|ADR + 0x4
// |____________|ADR + 0x8

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
112 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

// |____________| --> STACK_TEST_P_2ADR + 0xC
// | |
// | |
// | |
// | STACK |
// | |
// | |
// | |
// | |
// |____________| --> __BOOT_STACK_ADDRESS
// |____________| --> STACK_TEST_P_3
// |____________|
// |____________|
// |____________| --> STACK_TEST_P_4

In the example, the size is set to 0x10. The STACK_TEST_P_2 and STACK_TEST_P_3 symbols define the
first addresses under and above the stack and they are defined as exported symbols. This means that they are
also visible in the application. The areas are not included in the RAM region, so the compiler cannot reserve this
place for any variables or other parameters.

9.3 Stack test implementation
The test function for the stack and the initialization function are placed in the iec60730b_4_cm7_stack.S file and
they are written as assembler functions. The header file with the return values and the function prototypes is
iec60730b_4_cm7_stack.h. The iec60730b.h, asm_mac_common.h, and iec60730b_types.h are the common
header files for the safety library. The following sections show the example of the linker setup, process of
initialization, and implementation.

9.3.1 FS_CM4_CM7_STACK_Init

The purpose of initialization is to fill the defined areas with a given pattern. The first thing is to put the values
from the linker configuration file into variables. Then, define the rest of the parameters needed for the
initialization function.

Example of initialization:

#include "iec60730b.h"

extern unsigned long STACK_TEST_P_2;
extern unsigned long STACK_TEST_P_3;
const unsigned long stack_test_first_address = (unsigned long)&STACK_TEST_P_2;
const unsigned long stack_test_second_address = (unsigned long)&STACK_TEST_P_3;
const unsigned long stack_test_pattern = 0x77777777;
const unsigned long stack_test_block_size = 0x10;

Function prototype:

void FS_CM4_CM7_STACK_Init(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t secondAddress,
uint32_t blockSize);

Function inputs:

stackTestPattern - The pattern to be written into the areas (e.g. 0x77777777).

firstAddress - The first address of block under the stack area.

secondAddress - The first address of block above the stack area.

blockSize - The size of areas under and above the stack.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
113 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function output:

void

Function performance:

The function takes approximately 86 cycles for a block size of 0x10. (1.075 µs)1

The function size is 26 B.1

Calling restrictions:

None.

9.3.2 FS_CM4_CM7_STACK_Test

The testing procedure is the same after reset and during runtime. The function checks if the areas are not
rewritten with content different from the defined pattern. The inputs for the testing functions must be the same
as for the initialization functions.

Function prototype:

FS_RESULT FS_CM4_CM7_STACK_Test(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t
secondAddress, uint32_t blockSize);

Function inputs:

stackTestPattern - The test pattern (e.g. 0x77777777).

firstAddress - The first address of block in front of stack.

secondAddress - The first address of block behind the stack.

blockSize - The block size.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_STACK

Function performance:

The function for block size 0x10 takes approximately 117 cycles (1.463 µs).1

The function size is 42 B.1

Calling restrictions:

None.

10 TSI tests

The Touch Sensing Interface (TSI) provides touch sensing detection on capacitive touch sensors. The external
capacitive touch sensor is typically formed on PCB and the sensor's electrodes are connected to the TSI input
channels through the I/O pins in the device.

The following is a simplified block diagram of the I/O on the KE15z device:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
114 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 38. I/O simplified block diagram

10.1 TSI signal shorts tests
Because the analog TSI channels are shared with the digital I/O pins and the analog or digital features can be
easily selected or switched by the software writing to the appropriate pin MUX control bits located in the Pin
Control Register (PCR), the test procedure can periodically switch the pin MUX between the TSI (analog) mode
and the GPIO (digital) mode. It means that switching to the GPIO mode can be helpful for testing the TSI signal
trace shorts.

To test the TSI signal shorts, the following IEC60730 DIO short tests can be reused (see Section "Digital input/
output test")

10.2 TSI input test
This test is responsible for checking the typical conversion results of the individual TSI channels. When
the touch-sensing electrode is released (not touched), the typical conversion result is given by the intrinsic
(parasitic) capacitance load connected externally to the TSI channel. The intrinsic capacitance is given by
physical aspects of the PCB board, such as the touch-sensing electrodes and their type, size, shape, and signal
trace length. When the electrode is touched, the total external capacitive load increases, which changes the
conversion result. When the electrode is expected as released, you get the typical TSI counter value for the
electrode.

10.2.1 TSI input electrode disconnected (open pin) tests

The TSI input test covers also issues caused by wrong (cold) soldering, corrosion, or improper PCB component
placement during the manufacturing, such as wrong SMD part values or a mismatch between the SMD
components.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
115 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The detection method is based on tracking the typical signal (TSI counter) value. All of the sensor electrodes
have their typical signal baseline level stored in the internal flash memory (in a secure flash location, managed
by the CRC) as constants that are calibrated and stored during the production of the device. In the application,
the actual (measured) TSI counter value is then compared with the typical value for the individual sensors. If the
actual value is lesser or much higher than the stored typical value, a fault is detected. The thresholds must be
properly tuned to avoid false fault indications, because of environmental drifts and aging.

For example, two thresholds (high-watermark and low-watermark) can be selected, while expecting that the
signal stays within the tolerances in normal operation conditions, where the tolerance range can be selected like
a +/- 25 % deviation from the stored values.

Figure 39. TSI input test fault detection

Note: A fault occurs when the signal drops below the low watermark or rises above the high watermark.

If the abnormal signal level is measured during the production or factory calibration, it means that there may be
something wrong in the PCB manufacturing or assembly, like soldering, component placement, or mechanical
assembling (shorted or bended spring electrodes, and so on).

The signal suddenly drops below the normal level when the electrode connection is lost or the signal track is
terminated between the MCU pin and the electrode. It happens mostly because of cold electrode soldering or
cold serial resistor soldering. The signal may suddenly rise above the normal level because of the additional
loading, which may indicate a short cut or stray conductance because of long term oxidation.

10.3 Shorts or disconnection on guard sensors or shield electrode
The guard sensor is typically a hidden electrode connected to the dedicated TSI channel and physically
surrounding the other electrodes on the PCB. It is commonly used to detect the water flood on the touch control
panel and to disable the other electrodes when this issue happens. It can be used for the software offset
compensation, increasing the robustness and safety. The guard electrode signal path can be tested using all the
methods described above.

The shield electrode is a copper plane actively driven (buffered) by a dedicated TSI channel to compensate the
parasitic capacitance and increase the sensitivity and immunity against the environmental changes (drift). The
similar methods described above can be used to test the shield electrode.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
116 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

10.4 TSI input test architecture
The TSI IO test procedure performs the plausibility check of the digital IO interface of the processor. The TSI IO
test can be performed once after the MCU reset and during runtime.

The identification of a safety error is ensured by the specific FAIL return in the case of an TSI IO error. The
application developer must compare the return value of the test function with the expected value. If this is equal
to the FAIL return, then the jump into a safety-error-handling function must occur. The safety-error-handling
function may be specific to the application and it is not a part of the library. The main purpose of this function is
to put the application into a safety state.

10.4.1 TSI input check with non-stimulated inputs

The TSI IO test is based on sequence execution, where a certain external capacity level is connected to a
defined TSI input. The test function checks whether the converted value is within the tolerance. The test covers
the check of the TSI input interface and checks the defined TSI input channel values.

The block diagram for the TSI IO test with non-stimulated input is shown in the following figure:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
117 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 40. Software program flow for TSI input test with non-stimulated inputs

10.4.2 TSI input check with stimulated inputs (signal delta check)

The GPIO pull-up/down device can be enabled on an individual TSI channel pin, while the TSI channel is
actively scanned to affect the analog conversion result by additional loading caused by the pull-resistor. This
can be used for the stimulation of the pin. This channel stimulation is used to emulate the TSI signal (counter
value) change on the desired channel pin by software, without the external touch event. By enabling of the
internal pull-down or pull-up resistors on the appropriate DIO pin while the TSI measurement is active, you
add the load to the charging signal, resulting in a changed accumulated TSI counter number (signal delta).
Using this method, you can check the entire measurement chain from the TSI input pin to the TSI conversion
counter, including the internal analog multiplexer. You can stimulate the individual TSI channel inputs, check
the individual conversion results, and compare them with their typical signal delta values valid for the stimulated
state. When disabling the pull device, the TSI counter value must return to the typical level valid for the idle
state.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
118 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 41. TSI channel stimulation principles

10.4.2.1 TSI input channel stimulation

In a normal state, during every external charging cycle (ph. 1), the charging current is completely used to
charge the Cp up to a certain level. When the pull-down resistor is enabled, it creates an additional signal path
for the charging current, where a part of the current leaks through the resistor to the GND. The Cp is charged to
a smaller level (and the charge accumulated by the Cp is smaller) when compared to the normal state with the
pull-down resistor disabled.

During the internal charging cycle (ph. 2), the charge accumulated by the Cp is transferred to the reference
internal capacitor Ci. When the internal pull-up resistor is enabled, the charge steps are smaller. You need more
charging steps to charge the Ci to the appropriate level. More charging steps result in longer time and higher
count accumulated in the TSI result counter.

Figure 42. TSI stimulated channel Delta check

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
119 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Figure 43. Software program flow for TSI input test with stimulated inputs

10.5 TSI test implementation
The test functions for the TSI IO test are in the iec60730b_tsi .c file and they are written as C functions. The
header file with the function prototypes is iec60730b_tsi .h. iec60730b.h and iec60730b_types.h are the
common header files for the safety library.

The following functions are called to test the TSI input:

• FS_TSI_InputInit()
• FS_TSI_InputCheckNONStimulated()
• FS_TSI_InputCheckStimulated()
• FS_TSI_InputStimulate()
• FS_TSI_InputRelease()
• FS_TSI_InputCheckNONStimulated_v6()
• FS_TSI_InputCheckStimulated_v6()
• FS_TSI_InputStimulate_v6()
• FS_TSI_InputRelease_v6()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
120 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

10.5.1 TSI input test principles

The principle of the TSI input test is based on checking whether the converted analog value has the expected
value. This test uses the TSI inputs with known converted values and the checks whether the converted values
fit within the defined limits. It should normally be about +/- 25 % around the desired reference values.

The test is triggered by the first call of the FS_TSI_InputCheckNONStimulated () function. The test is divided
into three parts (the initialization, test execution, and end of test). This test also gathers TSI counter data in the
normal (non-stimulated) state, which are used as reference data for the TSI stimulated input test.

See TSI input test for more details about the test.

10.5.2 TSI stimulated input test principles

This test is responsible for a periodical check of the TSI counter delta change on the input stimulated by an
internal pull-up. The test is triggered by the FS_TSI_InputCheckStimulated() function call. When the channel
measurement completes, the appropriate pull resistor is disabled on the current input. The TSI counter value
measured with the stimulated input is compared with the value gathered previously without stimulation. This
difference is called the TSI delta signal. The TSI input channel is working properly when the delta signal is non-
zero. It means that a significant counter change is measured while the input is stimulated. Depending on the
TSI sensing mode and the polarity of stimulation, the delta value may have positive or negative signs. This delta
value is then compared with the typical delta value experimentally measured and predefined in the configuration
file. It means that the typical delta values must be measured in advance during the calibration of a known and
good device. See Section "TSI input test " for more details about the test.

Note: This test requires that the non-stimulated input test precedes the stimulated input test. The
FS_TSI_InputCheckNONStimulated() (or /_v6) and FS_TSI_InputCheckStimulated() (or /_v6) functions must
be called sequentially for the current TSI input channel. If the calling sequence is invalid, the function returns the
FS_TSI_INCORRECT_CALL fail code.

10.5.3 TSI test input function call example

uint32_t SafetyTsiChanelTest(safety_common_t *psSafetyCommon, fs_tsi_t* pObj)
{
 if(pObj->state == FS_TSI_PROGRESS_NONSTIM)
 {
 FS_TSI_InputCheckNONStimulated(pObj, (uint32_t *)TSI); /*Periodically call for
 result check */
 }
 if ((pObj->state == FS_TSI_PASS_NONSTIM) || (pObj->state ==
 FS_TSI_PROGRESS_STIM))
 { /*NON stimulated input check OK */
 FS_TSI_InputCheckStimulated(pObj, (uint32_t *)TSI);
 }
 if((pObj->state == FS_TSI_PASS) || (pObj->state == FS_TSI_INIT))
 { /*First call for this channel occur */
 if (pObj->input.tx_ch == SAFETY_SELFCAP_MODE) /*SET HW */
 { /* We want to test SELF CAP input*/
 Tsi0SetupSelfCap(); /* TSI HW init in Self mode */
 } else
 { /*HW to mutual cap*/
 Tsi0SetupMutualCap(); /* TSI HW init in Mutual mode */
 }
 FS_TSI_InputCheckNONStimulated(pObj, (uint32_t *)TSI);
 psSafetyCommon->TSI_test_result = FS_TSI_INPROGRESS;
 }

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
121 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

 if (pObj->state == FS_TSI_PASS_STIM) /*Second part of test done => set PASS to
 all */
 {
 psSafetyCommon->TSI_test_result = FS_PASS;
 }
 if (pObj->state == FS_FAIL_TSI)
 { /*TEST FAIL */
 psSafetyCommon->TSI_test_result = FS_FAIL_TSI;
 SafetyErrorHandling(psSafetyCommon);
 }
return 0;
}

10.5.4 FS_TSI_InputInit()

This function is dedicated for both TSI_v5 and TSI_v6 peripherals. This function initializes the respective items
in the defined "fs_tsi_t" structure and sets the state to "FS_TSI_INIT". It should be called before the non-
stimulated input test.

Function prototype:

void FS_TSI_InputInit(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.5 FS_TSI_InputCheckNONStimulated()

This function is dedicated for the TSI_v5 peripheral. This function executes the first part of the TSI test
sequence with a non-stimulated input. It reads the TSI counter value and checks whether the value fits into the
predefined limits. It also gathers the TSI counter data for the normal (non-stimulated) state, which are required
for the further stimulated input test.

The test is finished when the function reports FS_TSI_PASS_NONSTIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckNONStimulated(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the address of the TSI module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_NONSTIM
• FS_TSI_INCORRECT_CALL
• FS_FAIL_TSI

Function performance:
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
122 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The information about the function performance is in Core self-test library – source code version.

10.5.6 FS_TSI_InputCheckStimulated()

This function is dedicated for the TSI_v5 peripheral. This function executes the second part of the TSI
test sequence with a stimulated input. It checks whether the TSI input stimulated counter delta is in the
expected range. The test function can be called only after passing the non-stimulated test. Otherwise,
FS_TSI_INCORRECT_CALL is returned.

Note: Normally, the FS_TSI_InputCheckNONStimulated() call precedes the FS_TSI_InputCheckStimulated()
call. It is recommended to call both test functions in a close sequence.

The test is finished when this function reports FS_TSI_PASS_STIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckStimulated(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the adress of the TSI_v5 module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_STIM
• FS_TSI_INCORRECT_CALL
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.7 FS_TSI_InputStimulate()

The function stimulates the appropriate TSI_v5 pin by the pull-resistor on the current TSI channel when the TSI
input stimulation is required. The pull-up/down polarity is given by the stim_polarity parameter in the fs_tsi_t
struncture.

Function prototype:

FS_RESULT FS_TSI_InputStimulate(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
123 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

10.5.8 FS_TSI_InputRelease()

This function disables the pull-resistor stimulation on the appropriate TSI_v5 channel. It is also called internally
by the FS_TSI_InputStimulate() function as soon as the stimulated input check completes.

Function prototype:

FS_RESULT FS_TSI_InputRelease(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.9 FS_TSI_InputCheckNONStimulated_v6()

This function is dedicated for the TSI_v6 peripheral. This function executes the first part of the TSI_v6 test
sequence with a non-stimulated input. It reads the TSI_v6 counter value and checks whether the value fits into
the predefined limits. It also gathers the TSI_v6 counter data for the normal (non-stimulated) state, which are
required for the further stimulated input test.

The test is finished when the function reports FS_TSI_PASS_NONSTIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckNONStimulated_v6(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the address of the TSI_v6 module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_NONSTIM
• FS_TSI_INCORRECT_CALL
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.10 FS_TSI_InputCheckStimulated_v6()

This function is dedicated for the TSI_v6 peripheral. This function executes the second part of the TSI
test sequence with a stimulated input. It checks whether the TSI_v6 input stimulated counter delta is in
the expected range. The test function can be called only after passing the non-stimulated test. Otherwise,
FS_TSI_INCORRECT_CALL is returned.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
124 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Note: Normally, the FS_TSI_InputCheckNONStimulated_v6() call precedes the
FS_TSI_InputCheckStimulated_v6() call. It is recommended to call both test functions in a close sequence.

The test is finished when this function reports FS_TSI_PASS_STIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckStimulated_v6(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the adress of the TSI_v6 module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_STIM
• FS_TSI_INCORRECT_CALL
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.11 FS_TSI_InputStimulate_v6()

This function is dedicated for the TSI_v6 peripheral. The function stimulates the appropriate TSI_v6 pin by the
pull-resistor on the current TSI_v6 channel when the TSI input stimulation is required. The pull-up/down polarity
is given by the stim_polarity parameter in the fs_tsi_t structure.

Function prototype:

FS_RESULT FS_TSI_InputStimulate_v6(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.12 FS_TSI_InputRelease_v6()

This function is dedicated for the TSI_v6 peripheral. This function disables the pull-resistor stimulation on the
appropriate TSI_v6 channel. It is also called internally by the FS_TSI_InputCheckStimulated_v6() function as
soon as the stimulated input check completes.

Function prototype:

FS_RESULT FS_TSI_InputRelease_v6(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI_v6 test instance.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
125 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS
• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

11 Watchdog test

The watchdog test provides the testing of the watchdog timer functionality. The test checks whether the
watchdog timer can cause a reset and whether the reset happens at the expected time. Before the start of the
test, the watchdog must be configured for use in the respective application. The next step before the test is the
setup of the independent device timer, which is used for the watchdog timeout comparison. The first function
for watchdog testing is called after that. This function refreshes the watchdog timer, activates the device timer,
and captures the device timer counter value during an endless loop. This function should be called only once
after the Power-On Reset (POR). After the watchdog reset, the second function must be called. This function
should be called after every reset, except for the POR. This function checks whether the captured device timer
counter value corresponds to the expected watchdog timeout value. The next check is whether the number of
watchdog resets does not exceed the limit value. You can choose what action must be made after an incorrect
result. Due to safety requirements, you have limited options for choosing the clock source for the watchdog and
the device timer. The first condition is that the watchdog timer clock cannot be the same as the watchdog bus
interface clock. Check the device reference manual for the watchdog timer clock source options. The second
condition is that the watchdog timer clock cannot be the same as the device timer clock.

11.1 Watchdog test in compliance with IEC/UL standards
The watchdog test is not directly specified in the IEC60730 - annex H table, but it partially fulfils the safety
requirements according to IEC 60730-1, IEC 60335, UL 60730, and UL 1998 standards, as described in
Table 29.

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Watchdog test 3. Clock Wrong frequency B/R.1 Frequency monitoring

Watchdog test 8. Monitoring devices
and comparators

Any output outside
the static and dynamic
functional specification

B/R.1 Tested monitoring

Table 29. Watchdog test in compliance with the standards

11.2 Watchdog test implementation
The test functions for the watchdog are placed in the iec60730b_wdog.c file. The header file is
iec60730b_wdog.h. The iec60730b.h, iec60730b.h, and iec60730b_types.h are the common header files for the
safety library.

You must have available space, which is not corrupted after the non-POR in the RAM memory.

This memory is used for your variable of the fs_wdog_test_t type, which is a structure with three members. It is
defined in the iec60730b _wdog.h file.

It is important to configure the watchdog module and the device timer before starting the watchdog test.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
126 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

The watchdog timer module is different for the supported devices. For a correct function for the corresponding
device, see the device implementation chapter.

Ensure the handling of the functions. To identify the source of the reset, use the reset control module. The
common configuration is that if an unwanted result is found by the check function, the program stays in an
endless loop in the function. This causes the application to stay in the loop of watchdog resets. By entering zero
as the fourth input value of the check function, the endless loop is not activated. In that case, ensure that the
application is put into a safe state.

The following is an example of the watchdog test implementation (MKV1x):

#include “iec60730b.h”
#define WATCHDOG_ENABLED
#define Watchdog_refresh WDOG_REFRESH = 0xA602;WDOG_REFRESH = 0xB480
extern uint32_t WD_TEST_BACKUP; /* from Linker configuration file */
const uint32_t WD_backup_address = (uint32_t)&WD_TEST_BACKUP;
#define WATCHDOG_TEST_VARIABLES ((WD_Test_Str *) WD_backup_address)
#define WD_TEST_LIMIT_HIGH 3400
#define WD_TEST_LIMIT_LOW 3000
#define ENDLESS_LOOP_ENABLE 1 /* set 1 or 0 */
#define WATCHDOG_RESETS_LIMIT 1000
#define WATCHDOG_TIMEOUT_VALUE 100
#define REFRESH_INDEX FS_KINETIS_WDOG
#define REG_WIDE FS_WDOG_SRS_WIDE_8b
#define CLEAR_FLAG 0
MCG_C1 |= MCG_C1_IRCLKEN_MASK; /* MCGIRCLK active */
MCG_C2 &= (~MCG_C2_IRCS_MASK); /* slow reference clock selected */
SIM_SCGC5 |= SIM_SCGC5_LPTMR_MASK; /* enable clock gate to LPTMR */
LPTMR0_CSR = 0; /* time counter mode */
LPTMR0_CSR = LPTMR_CSR_TCF_MASK|LPTMR_CSR_TFC_MASK; /* CNR reset on overflow */
LPTMR0_PSR |= LPTMR_PSR_PBYP_MASK; /* prescaler bypassed, */
LPTMR0_PSR &= (~LPTMR_PSR_PCS_MASK); /* clear prescaler clock */
LPTMR0_PSR |= LPTMR_PSR_PCS(0); /* select the clock input */
LPTMR0_CMR = 0; /* clear the compare register */
LPTMR0_CSR |= LPTMR_CSR_TEN_MASK; /* enable timer */
WatchdogEnable();
 if (RCM_SRS0_POR_MASK==(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if POR reset */
 {
 FS_WDOG_Setup(WATCHDOG_TEST_VARIABLES, REFRESH_INDEX);
 }
 if (RCM_SRS0_POR_MASK!=(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if non-POR reset */
 {
 FS_WDOG_Check(WD_TEST_LIMIT_HIGH, WD_TEST_LIMIT_LOW, WATCHDOG_RESETS_LIMIT,
 ENDLESS_LOOP_ENABLE, WATCHDOG_TEST_VARIABLES, CLEAR_FLAG, REG_WIDE);
 }

11.2.1 FS_WDOG_Setup_LPTMR()

This function clears the reset counter, which is a member of the fs_wdog_test_t structure. It refreshes the
watchdog to start counting from zero. It starts the LPTMR, which must be configured before the function call
occurs. Within the waiting endless loop, the value from the LPTMR is periodically stored in the reserved area in
the RAM.

Function prototype:

void FS_WDOG_Setup_LPTMR(fs_wdog_test_t *pWatchdogBackup, uint8_t refresh_index)

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
127 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

refresh_index- The index to select the WDOG refresh sequence. Use the following macros:
FS_KINETIS_WDOG, FS_WDOG32, or FS_COP_WDOG.

Function output:

void

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test_t type must
be declared and placed into a reliable place. Interrupts should be disabled.

The "refresh_index" parameters must be filled corectly if your example application is set to a correct version.
For other devices, compare the reference manual of your device with Table 30 or with the reference device in
the following table.

Refresh Index parameter Refresh sequence Reference device

FS_KINETIS_WDOG • WdogBase->REFRESH = 0xA602U;
• WdogBase->REFRESH = 0xB480U;/

* refresh sequence */

MKV11

FS_WDOG32 WdogBase->CNT = 0xB480A602U; /*
refresh sequence */

MK32L2A

FS_COP_WDOG • WdogBase->SRVCOP = FS_SIM_
KL2X_SRVCOP_SRVCOP(0x55U);

• WdogBase->SRVCOP = FS_SIM_
KL2X_SRVCOP_SRVCOP(0xAAU);

MKL26z

Table 30. Refresh sequence

11.2.2 FS_WDOG_Setup_KE0XZ()

This function can be used for KE0xZ devices. This function clears the reset counter, which is a member of
the fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the RTC, which
must be configured before the function call occurs. Within the waiting endless loop, the value from the RTC is
periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_KE0XZ(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

Interrupts should be disabled. The watchdog timer and the RTC must be configured correctly. A variable of
the fs_wdog_test_t type must be declared and placed into the RAM area that is not overwritten during the
application startup.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
128 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the RTC timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.3 FS_WDOG_Setup_IMX_GPT()

This function can be used for devices with the GPT timer and a supported WDOG. This function clears the reset
counter, which is a member of the "fs_wdog_test_t" structure. It refreshes the watchdog to start counting from
zero. It starts the GPT, which must be configured before the function call occurs. Within the endless waiting
loop, the value from the GPT is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_IMX_GPT(fs_wdog_test_t *pWatchdogBackup, uint8_t refresh_index)

Function inputs:

*pWatchdogBackup - The pointer to the structure with "fs_wdog_test_t" variables.

refresh_index - The index of the refresh sequence. It can be FS_IMXRT, FS_IMX8M.

Function output:

void

Function performance:

The duration of this function depends on the WDOG timeout, because the function waits in the WDOG reset.
The size of the function is TBD bytes.

Calling restrictions:

The watchdog timer and the GPT must be configured correctly. A variable of the fs_wdog_test_t type must be
declared and placed into the RAM area that is not overwritten during the application startup.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the GPT timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

The "refresh_index" parameter is used to choose the type of the WDOG used. The function supports two types
of WDOG for MIMX devices:

• FS_IMXRT - situated for example on IMXRT1050.
• FS_IMX8M - situated for example on MIMX8MM.

It is necessary to compare the register memory map for your device with these three used types and choose a
corresponding refresh sequence.

11.2.4 FS_WDOG_Check()

This function compares the captured value of the reference counter with precalculated limit values and
checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog reset,

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
129 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

"wd_test_uncomplete_flag" is set and a corresponding return error returned. With the "endless_loop_enable"
parameter, the endless loop within the function is enabled or disabled (by setting it to 1 or 0). If the endless loop
is disabled, the function returns a corresponding error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.
• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.
• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t
endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup, bool_t clear_flag, bool_t RegWide8b)

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enables or disables the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

clear_flag - Boolean value. If it is TRUE, the WDOG reset flag from the reset-detection register is deleted.

RegWide8b - When it is TRUE, the reset-detection register is accesed as 8b (32b otherwise).

Function output:

The function can stay in an endless loop if the "endlessLoopEnable" parameter is set to 1 or if the return value
is as follows:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET, or
FS_PASS.

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

11.2.5 FS_WDOG_Setup_WWDT_LPC_mrt()

This function can be used for the LPC devices with WWDT and MRT. This function clears the reset counter,
which is a member of the fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It
starts the MRT, which must be configured before the function call occurs. Within the waiting endless loop, the
value from the MRT is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_WWDT_LPC_mrt(fs_wdog_test_t *pWatchdogBackup, uint8_t channel);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

channel - The channel index of the MRT timer.

Function output:

void

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
130 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the MRT must be configured correctly. A variable of the fs_wdog_test_t type must be
declared and placed into the RAM area that is not overwritten during application startup. Interrupts should be
disabled.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the MRT timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.6 FS_WDOG_Setup_WWDT_CTIMER()

This function can be used for the devices with the WWDT and CTIMER peripherals. This function clears the
reset counter, which is a member of the fs_wdog_test_t structure. It refreshes the watchdog to start counting
from zero. It starts the CTimer, which must be configured before the function call occurs. Within the waiting
endless loop, the value from the CTimer is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_WWDT_CTIMER(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The duration of this function depends on the WDOG timeout, because the function waits in the WDOG reset.
The size of function is 70 bytes.

Calling restrictions:

The watchdog timer and the Ctimer must be configured correctly. A variable of the fs_wdog_test_t type must be
declared and placed into the RAM area that is not overwritten during application startup. Interrupts should be
disabled.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the CTIMER timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.7 FS_WDOG_Check_WWDT_LPC()

This function can be used for the devices with the WWDT watchdog. This function compares the captured value
of the target counter with precalculated limit values and checks whether the watchdog reset counter overflows.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
131 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

If the function is called after a non-watchdog reset, "wd_test_uncomplete_flag" is set. The endless loop within
the function is enabled or disabled with the "endless_loop_enable" parameter (by setting it to 1 or 0). If the
endless loop is disabled, the function returns the corresponding error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.
• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.
• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check_WWDT_LPC(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t
endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

The function can stay in the endless loop, if the "endlessLoopEnable" parameter is set to 1 or the return value:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET or FS_PASS

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

If necessary, fill these variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.8 FS_WDOG_Check_WWDT_LPC55SXX()

This function can be used for LPC55Sxx devices. This function compares the captured value of the target
counter with precalculated limit values and checks whether the watchdog reset counter overflows. If the function
is called after a non-watchdog reset, "wd_test_uncomplete_flag" is set. The endless loop within the function
is enabled or disabled with the "endless_loop_enable" parameter (by setting it to 1 or 0). If the endless loop is
disabled, the function returns the corresponding error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.
• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.
• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
132 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

uint32_t FS_WDOG_Check_WWDT_LPC55SXX(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets,
bool_t endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

The function can stay in the endless loop - if the "endlessLoopEnable" parameter is set to 1 or the return value:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET or FS_PASS

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

It Is necessary to fill these variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.9 FS_WDOG_Check_WWDT_MCX()

This function can be used for the devices with the WWDT watchdog. This function compares the captured value
of the target counter with precalculated limit values and checks whether the watchdog reset counter overflows.
If the function is called after a non-watchdog reset, "wd_test_uncomplete_flag" is set. The endless loop within
the function is enabled or disabled with the "endless_loop_enable" parameter (by setting it to 1 or 0). If the
endless loop is disabled, the function returns the corresponding error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.
• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.
• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check_WWDT_MCX(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t
endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
133 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

The function can stay in the endless loop, if the "endlessLoopEnable" parameter is set to 1 or the return value:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET or FS_PASS

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

If necessary, fill these variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.
• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).
• wdogBackup->RefTimerBase - The base address of the timer used.
• wdogBackup->WdogBase - The base address of the WDOG used.

12 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

13 Revision history

Revision number Release date Description

0 7 December 2023 Release of IEC60730B safety class B library v4.4

Table 31. Revision table

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
134 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
135 / 140

mailto:PSIRT@nxp.com

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

IAR — is a trademark of IAR Systems AB.
i.MX — is a trademark of NXP B.V.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
136 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Tables
Tab. 1. Library object code ..2
Tab. 2. List of library items ..3
Tab. 3. MIMX8MMx dedicated functions 7
Tab. 4. MIMX8MNx and MIMX8MLx dedicated

functions .. 7
Tab. 5. MIMXRT10xx dedicated functions8
Tab. 6. MIMXRT117x/116x dedicated functions 9
Tab. 7. MK2xF dedicated functions9
Tab. 8. MKE1xF dedicated functions10
Tab. 9. MKV3x dedicated functions11
Tab. 10. MKV4x dedicated functions11
Tab. 11. MKV5x dedicated functions12
Tab. 12. LPC54S0x/LPC540x dedicated functions13
Tab. 13. MK32L3 dedicated functions for CM4 core14
Tab. 14. Analog input/output test in compliance with

IEC and UL standards 15
Tab. 15. Clock test in compliance with IEC and UL

standards ...30
Tab. 16. Digital input/output test in compliance with

IEC and UL standards 34
Tab. 17. Invariable memory test in compliance with

IEC and UL standards 81
Tab. 18. Duration of FS_FLASH_C_HW16_K()

depending on tested block size84

Tab. 19. Duration of FS_FLASH_C_HW16_L()
depending on tested block size85

Tab. 20. Duration of FS_CM4_CM7_FLASH_
HW32_DCP() in dependence of tested
block size .. 86

Tab. 21. Duration of FS_CM4_CM7_FLASH_
HW16() in dependence of tested block size 87

Tab. 22. Duration of FS_CM4_CM7_FLASH_
SW16() in dependence of tested block size 88

Tab. 23. Duration of FS_CM4_CM7_FLASH_
SW32() in dependence of tested block size 88

Tab. 24. CPU program counter test in compliance
with IEC/UL standards 91

Tab. 25. Variable memory test in compliance with
IEC and UL standards 95

Tab. 26. FS_CM4_CM7_RAM_AfterReset duration 96
Tab. 27. FS_CM4_CM7_RAM_Runtime duration97
Tab. 28. CPU register test in compliance with IEC

and UL standards ..105
Tab. 29. Watchdog test in compliance with the

standards ...126
Tab. 30. Refresh sequence ... 128
Tab. 31. Revision table ..134

Figures
Fig. 1. Block diagram for analog input test15
Fig. 2. ADC Test Code flow ..17
Fig. 3. Block diagram for clock test 30
Fig. 4. Block diagram for digital input test 36
Fig. 5. Block diagram for digital output test 37
Fig. 6. Extended digital input test39
Fig. 7. Block diagram of FS_DIO_ShortToAdjSet()

function ..41
Fig. 8. Block diagram of FS_DIO_

ShortToSupplySet function 43
Fig. 9. Extended digital input test45
Fig. 10. Block diagram of FS_DIO_ShortToAdjSet_

MCX() function .. 47
Fig. 11. Block diagram of FS_DIO_

ShortToSupplySet_MCX function 49
Fig. 12. Extended digital input test for IMX8M51
Fig. 13. Block diagram for digital output test 52
Fig. 14. Block diagram of FS_DIO_ShortToAdjSet_

IMX8M() function ...54
Fig. 15. Block diagram of FS_DIO_ShortToAdjSet_

LPC() function ... 56
Fig. 16. Block diagram of FS_DIO_

ShortToSupplySet_IMX8M() function 58
Fig. 17. Extended digital input test for IMXRT60
Fig. 18. Block diagram for digital output test 61
Fig. 19. Block diagram of FS_DIO_ShortToAdjSet_

IMXRT() function ... 63

Fig. 20. Block diagram of FS_DIO_
ShortToSupplySet_IMXRT() function65

Fig. 21. Extended digital input test for LPC devices 67
Fig. 22. Block diagram for digital output test 69
Fig. 23. Block diagram of FS_DIO_ShortToAdjSet_

LPC() function ... 71
Fig. 24. Block diagram of FS_DIO_

ShortToSupplySet_LPC function 73
Fig. 25. Extended digital input test for IMX RGPIO 75
Fig. 26. Block diagram of FS_DIO_ShortToAdjSet_

RGPIO() function ...77
Fig. 27. Block diagram of FS_DIO_

ShortToSupplySet_RGPIO() function 79
Fig. 28. Checksum settings for linker 82
Fig. 29. Block diagram for PC_Test 90
Fig. 30. Block diagram for after-reset test of RAM 93
Fig. 31. Block diagram for runtime test of RAM94
Fig. 32. Block diagram for R2 – R12 registers test 100
Fig. 33. Block diagram for R0, R1, LR, APSR

registers test ..101
Fig. 34. Block diagram for PRIMASK ,

FAULTMAST, BASEPRI and CONTROL
registers test ..102

Fig. 35. Block diagram for SP_main and SP_
process registers test103

Fig. 36. Block diagram for FPSCR register test104
Fig. 37. Block diagram for S0 - S31 registers test 105
Fig. 38. I/O simplified block diagram 115

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
137 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Fig. 39. TSI input test fault detection 116
Fig. 40. Software program flow for TSI input test

with non-stimulated inputs118
Fig. 41. TSI channel stimulation principles119

Fig. 42. TSI stimulated channel Delta check 119
Fig. 43. Software program flow for TSI input test

with stimulated inputs120

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
138 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

Contents
1 Core self-test library ..2
1.1 Core-dependent part ..2
1.2 Peripheral-dependent part 2
1.3 Core self-test library – object code2
1.4 Core self-test library – source code3
1.4.1 MIMX8MMx dedicated functions7
1.4.2 MIMX8MNx and MIMX8MLx dedicated

functions ...7
1.4.3 MIMXRT10xx dedicated functions 8
1.4.4 MIMXRT117x/116x dedicated functions9
1.4.5 MK2xF dedicated functions 9
1.4.6 MKE1xF dedicated functions 10
1.4.7 MKV3x dedicated functions 11
1.4.8 MKV4x dedicated functions 11
1.4.9 MKV5x dedicated functions 12
1.4.10 LPC54S0x/LPC540x dedicated functions 13
1.4.11 MK32L3 CM4 dedicated functions13
1.5 Functions performance measurement 14
2 Analog Input/Output (IO) test 14
2.1 Analog input/output test in compliance with

IEC/UL standards .. 15
2.2 Analog input/output test implementation16
2.2.1 ADC type A1 ... 19
2.2.1.1 fs_aio_a1_t .. 19
2.2.1.2 fs_aio_test_a1_t ...19
2.2.1.3 FS_AIO_InputSet_A1() 19
2.2.1.4 FS_AIO_ReadResult_A1()20
2.2.2 ADC type A23 ..20
2.2.2.1 fs_aio_a23_t .. 21
2.2.2.2 fs_aio_test_a2346_t ...21
2.2.2.3 FS_AIO_InputSet_A23() 21
2.2.2.4 FS_AIO_ReadResult_A23()22
2.2.3 ADC type A4 ... 22
2.2.3.1 fs_aio_a4_t .. 22
2.2.3.2 fs_aio_test_a2346_t ...22
2.2.3.3 FS_AIO_InputSet_A4() 23
2.2.3.4 FS_AIO_ReadResult_A4()23
2.2.4 ADC type A6 ... 24
2.2.4.1 fs_aio_a6_t .. 24
2.2.4.2 fs_aio_test_a2346_t ...24
2.2.4.3 FS_AIO_InputSet_A6() 24
2.2.4.4 FS_AIO_ReadResult_A6()25
2.2.5 ADC type A5 ... 25
2.2.5.1 fs_aio_a5_t .. 25
2.2.5.2 fs_aio_test_a5_t ...26
2.2.5.3 FS_AIO_InputSet_A5() 26
2.2.5.4 FS_AIO_ReadResult_A5()26
2.2.6 ADC type A7 ... 27
2.2.6.1 fs_aio_a7_t .. 27
2.2.6.2 fs_aio_test_a7_t ...27
2.2.6.3 FS_AIO_InputSet_A7() 28
2.2.6.4 FS_AIO_ReadResult_A7()28
2.2.7 FS_AIO_LimitCheck() 28
3 Clock test ... 29
3.1 Clock test in compliance with IEC/UL

standards ... 30

3.2 Clock test implementation 30
3.2.1 FS_CLK_Init() .. 31
3.2.2 FS_CLK_Check() ...31
3.2.3 FS_CLK_LPTMR() ...32
3.2.4 FS_CLK_RTC() ..32
3.2.5 FS_CLK_GPT() ..33
3.2.6 FS_CLK_CTIMER() ... 33
3.2.7 FS_CLK_WKT_LPC() 33
4 Digital input/output test 34
4.1 Digital input/output test in compliance with

IEC/UL standards .. 34
4.2 Digital input/output test implementation 34
4.2.1 FS_DIO_Input() ..35
4.2.2 FS_DIO_Output() ...37
4.2.3 FS_DIO_InputExt() .. 38
4.2.4 FS_DIO_ShortToAdjSet()40
4.2.5 FS_DIO_ShortToSupplySet()42
4.2.6 FS_DIO_InputExt_MCX() 44
4.2.7 FS_DIO_ShortToAdjSet_MCX()46
4.2.8 FS_DIO_ShortToSupplySet_MCX() 48
4.2.9 FS_DIO_InputExt_IMX8M() 50
4.2.10 FS_DIO_Output_IMX8M() 52
4.2.11 FS_DIO_ShortToAdjSet_IMX8M() 53
4.2.11.1 FS_DIO_ShortToAdjSet_LPC()55
4.2.12 FS_DIO_ShortToSupplySet_IMX8M()57
4.2.13 FS_DIO_InputExt_IMXRT() 59
4.2.14 FS_DIO_Output_IMXRT()61
4.2.15 FS_DIO_ShortToAdjSet_IMXRT()62
4.2.16 FS_DIO_ShortToSupplySet_IMXRT()64
4.2.17 FS_DIO_InputExt_LPC() 66
4.2.18 FS_DIO_Output_LPC()68
4.2.19 FS_DIO_ShortToAdjSet_LPC()70
4.2.20 FS_DIO_ShortToSupplySet_LPC() 72
4.2.21 FS_DIO_InputExt_RGPIO()74
4.2.22 FS_DIO_ShortToAdjSet_RGPIO() 76
4.2.23 FS_DIO_ShortToSupplySet_RGPIO() 78
5 Invariable memory test 80
5.1 Invariable memory test in compliance with

IEC/UL standards .. 80
5.2 Invariable memory test implementation 81
5.2.1 Computing of CRC value in linking phase of

application ..81
5.2.2 Test performed once after MCU reset83
5.2.3 Runtime test .. 83
5.2.4 FS_FLASH_C_HW16_K() 84
5.2.5 FS_FLASH_C_HW16_L()85
5.2.6 FS_CM4_CM7_FLASH_HW32_DCP()85
5.2.7 FS_CM4_CM7_FLASH_HW16() 87
5.2.8 FS_CM4_CM7_FLASH_SW16()87
5.2.9 FS_CM4_CM7_FLASH_SW32()88
6 CPU program counter test89
6.1 CPU program counter test in compliance

with IEC/UL standards90
6.2 CPU program counter test implementation 91
6.2.1 FS_CM4_CM7_PC_Test() 91
6.2.2 FS_PC_Object() ...92

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023
139 / 140

NXP Semiconductors UG10104
IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide

7 Variable memory test 92
7.1 Variable memory test in compliance with

IEC/UL standards .. 94
7.2 Variable memory test implementation95
7.2.1 FS_CM4_CM7_RAM_AfterReset() 95
7.2.2 FS_CM4_CM7_RAM_Runtime()96
7.2.3 FS_CM4_CM7_RAM_CopyFromBackup() 97
7.2.4 FS_CM4_CM7_RAM_CopyToBackup()98
7.2.5 FS_CM4_CM7_RAM_SegmentMarchC() 98
7.2.6 FS_CM4_CM7_RAM_SegmentMarchX() 98
8 CPU register test ... 99
8.1 CPU register test in compliance with IEC/

UL standards ... 105
8.2 CPU register test implementation 105
8.2.1 FS_CM4_CM7_CPU_Control()106
8.2.2 FS_CM4_CM7_CPU_ControlFpu()106
8.2.3 FS_CM4_CM7_CPU_Float1() 107
8.2.4 FS_CM4_CM7_CPU_Float2() 108
8.2.5 FS_CM4_CM7_CPU_

NonStackedRegister()108
8.2.6 FS_CM4_CM7_CPU_Primask() 109
8.2.7 FS_CM4_CM7_CPU_Register()109
8.2.8 FS_CM4_CM7_CPU_Special()110
8.2.9 FS_CM4_CM7_CPU_

Special8PriorityLevels() 110
8.2.10 FS_CM4_CM7_CPU_SPmain()111
8.2.11 FS_CM4_CM7_CPU_SPprocess() 111
9 Stack test ..112
9.1 Stack test in compliance with IEC/UL

standards ... 112
9.2 Linker setup ... 112
9.3 Stack test implementation113
9.3.1 FS_CM4_CM7_STACK_Init113
9.3.2 FS_CM4_CM7_STACK_Test 114
10 TSI tests ..114
10.1 TSI signal shorts tests 115
10.2 TSI input test ... 115
10.2.1 TSI input electrode disconnected (open pin)

tests ... 115
10.3 Shorts or disconnection on guard sensors

or shield electrode ... 116
10.4 TSI input test architecture117
10.4.1 TSI input check with non-stimulated inputs117
10.4.2 TSI input check with stimulated inputs

(signal delta check) 118
10.4.2.1 TSI input channel stimulation 119
10.5 TSI test implementation120
10.5.1 TSI input test principles 121
10.5.2 TSI stimulated input test principles 121
10.5.3 TSI test input function call example 121
10.5.4 FS_TSI_InputInit() ..122
10.5.5 FS_TSI_InputCheckNONStimulated() 122
10.5.6 FS_TSI_InputCheckStimulated() 123
10.5.7 FS_TSI_InputStimulate() 123
10.5.8 FS_TSI_InputRelease() 124
10.5.9 FS_TSI_InputCheckNONStimulated_v6()124

10.5.10 FS_TSI_InputCheckStimulated_v6()124
10.5.11 FS_TSI_InputStimulate_v6()125
10.5.12 FS_TSI_InputRelease_v6() 125
11 Watchdog test .. 126
11.1 Watchdog test in compliance with IEC/UL

standards ... 126
11.2 Watchdog test implementation126
11.2.1 FS_WDOG_Setup_LPTMR()127
11.2.2 FS_WDOG_Setup_KE0XZ()128
11.2.3 FS_WDOG_Setup_IMX_GPT() 129
11.2.4 FS_WDOG_Check() 129
11.2.5 FS_WDOG_Setup_WWDT_LPC_mrt() 130
11.2.6 FS_WDOG_Setup_WWDT_CTIMER()131
11.2.7 FS_WDOG_Check_WWDT_LPC()131
11.2.8 FS_WDOG_Check_WWDT_LPC55SXX()132
11.2.9 FS_WDOG_Check_WWDT_MCX()133
12 Note about the source code in the

document ..134
13 Revision history ...134

Legal information ...135

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 7 December 2023
Document identifier: UG10104

	1 Core self-test library
	1.1 Core-dependent part
	1.2 Peripheral-dependent part
	1.3 Core self-test library – object code
	1.4 Core self-test library – source code
	1.4.1 MIMX8MMx dedicated functions
	1.4.2 MIMX8MNx and MIMX8MLx dedicated functions
	1.4.3 MIMXRT10xx dedicated functions
	1.4.4 MIMXRT117x/116x dedicated functions
	1.4.5 MK2xF dedicated functions
	1.4.6 MKE1xF dedicated functions
	1.4.7 MKV3x dedicated functions
	1.4.8 MKV4x dedicated functions
	1.4.9 MKV5x dedicated functions
	1.4.10 LPC54S0x/LPC540x dedicated functions
	1.4.11 MK32L3 CM4 dedicated functions

	1.5 Functions performance measurement

	2 Analog Input/Output (IO) test
	2.1 Analog input/output test in compliance with IEC/UL standards
	2.2 Analog input/output test implementation
	2.2.1 ADC type A1
	2.2.1.1 fs_aio_a1_t
	2.2.1.2 fs_aio_test_a1_t
	2.2.1.3 FS_AIO_InputSet_A1()
	2.2.1.4 FS_AIO_ReadResult_A1()

	2.2.2 ADC type A23
	2.2.2.1 fs_aio_a23_t
	2.2.2.2 fs_aio_test_a2346_t
	2.2.2.3 FS_AIO_InputSet_A23()
	2.2.2.4 FS_AIO_ReadResult_A23()

	2.2.3 ADC type A4
	2.2.3.1 fs_aio_a4_t
	2.2.3.2 fs_aio_test_a2346_t
	2.2.3.3 FS_AIO_InputSet_A4()
	2.2.3.4 FS_AIO_ReadResult_A4()

	2.2.4 ADC type A6
	2.2.4.1 fs_aio_a6_t
	2.2.4.2 fs_aio_test_a2346_t
	2.2.4.3 FS_AIO_InputSet_A6()
	2.2.4.4 FS_AIO_ReadResult_A6()

	2.2.5 ADC type A5
	2.2.5.1 fs_aio_a5_t
	2.2.5.2 fs_aio_test_a5_t
	2.2.5.3 FS_AIO_InputSet_A5()
	2.2.5.4 FS_AIO_ReadResult_A5()

	2.2.6 ADC type A7
	2.2.6.1 fs_aio_a7_t
	2.2.6.2 fs_aio_test_a7_t
	2.2.6.3 FS_AIO_InputSet_A7()
	2.2.6.4 FS_AIO_ReadResult_A7()

	2.2.7 FS_AIO_LimitCheck()

	3 Clock test
	3.1 Clock test in compliance with IEC/UL standards
	3.2 Clock test implementation
	3.2.1 FS_CLK_Init()
	3.2.2 FS_CLK_Check()
	3.2.3 FS_CLK_LPTMR()
	3.2.4 FS_CLK_RTC()
	3.2.5 FS_CLK_GPT()
	3.2.6 FS_CLK_CTIMER()
	3.2.7 FS_CLK_WKT_LPC()

	4 Digital input/output test
	4.1 Digital input/output test in compliance with IEC/UL standards
	4.2 Digital input/output test implementation
	4.2.1 FS_DIO_Input()
	4.2.2 FS_DIO_Output()
	4.2.3 FS_DIO_InputExt()
	4.2.4 FS_DIO_ShortToAdjSet()
	4.2.5 FS_DIO_ShortToSupplySet()
	4.2.6 FS_DIO_InputExt_MCX()
	4.2.7 FS_DIO_ShortToAdjSet_MCX()
	4.2.8 FS_DIO_ShortToSupplySet_MCX()
	4.2.9 FS_DIO_InputExt_IMX8M()
	4.2.10 FS_DIO_Output_IMX8M()
	4.2.11 FS_DIO_ShortToAdjSet_IMX8M()
	4.2.11.1 FS_DIO_ShortToAdjSet_LPC()

	4.2.12 FS_DIO_ShortToSupplySet_IMX8M()
	4.2.13 FS_DIO_InputExt_IMXRT()
	4.2.14 FS_DIO_Output_IMXRT()
	4.2.15 FS_DIO_ShortToAdjSet_IMXRT()
	4.2.16 FS_DIO_ShortToSupplySet_IMXRT()
	4.2.17 FS_DIO_InputExt_LPC()
	4.2.18 FS_DIO_Output_LPC()
	4.2.19 FS_DIO_ShortToAdjSet_LPC()
	4.2.20 FS_DIO_ShortToSupplySet_LPC()
	4.2.21 FS_DIO_InputExt_RGPIO()
	4.2.22 FS_DIO_ShortToAdjSet_RGPIO()
	4.2.23 FS_DIO_ShortToSupplySet_RGPIO()

	5 Invariable memory test
	5.1 Invariable memory test in compliance with IEC/UL standards
	5.2 Invariable memory test implementation
	5.2.1 Computing of CRC value in linking phase of application
	5.2.2 Test performed once after MCU reset
	5.2.3 Runtime test
	5.2.4 FS_FLASH_C_HW16_K()
	5.2.5 FS_FLASH_C_HW16_L()
	5.2.6 FS_CM4_CM7_FLASH_HW32_DCP()
	5.2.7 FS_CM4_CM7_FLASH_HW16()
	5.2.8 FS_CM4_CM7_FLASH_SW16()
	5.2.9 FS_CM4_CM7_FLASH_SW32()

	6 CPU program counter test
	6.1 CPU program counter test in compliance with IEC/UL standards
	6.2 CPU program counter test implementation
	6.2.1 FS_CM4_CM7_PC_Test()
	6.2.2 FS_PC_Object()

	7 Variable memory test
	7.1 Variable memory test in compliance with IEC/UL standards
	7.2 Variable memory test implementation
	7.2.1 FS_CM4_CM7_RAM_AfterReset()
	7.2.2 FS_CM4_CM7_RAM_Runtime()
	7.2.3 FS_CM4_CM7_RAM_CopyFromBackup()
	7.2.4 FS_CM4_CM7_RAM_CopyToBackup()
	7.2.5 FS_CM4_CM7_RAM_SegmentMarchC()
	7.2.6 FS_CM4_CM7_RAM_SegmentMarchX()

	8 CPU register test
	8.1 CPU register test in compliance with IEC/UL standards
	8.2 CPU register test implementation
	8.2.1 FS_CM4_CM7_CPU_Control()
	8.2.2 FS_CM4_CM7_CPU_ControlFpu()
	8.2.3 FS_CM4_CM7_CPU_Float1()
	8.2.4 FS_CM4_CM7_CPU_Float2()
	8.2.5 FS_CM4_CM7_CPU_NonStackedRegister()
	8.2.6 FS_CM4_CM7_CPU_Primask()
	8.2.7 FS_CM4_CM7_CPU_Register()
	8.2.8 FS_CM4_CM7_CPU_Special()
	8.2.9 FS_​CM4_​CM7_​CPU_​Special8​Priority​Levels()​
	8.2.10 FS_CM4_CM7_CPU_SPmain()
	8.2.11 FS_CM4_CM7_CPU_SPprocess()

	9 Stack test
	9.1 Stack test in compliance with IEC/UL standards
	9.2 Linker setup
	9.3 Stack test implementation
	9.3.1 FS_CM4_CM7_STACK_Init
	9.3.2 FS_CM4_CM7_STACK_Test

	10 TSI tests
	10.1 TSI signal shorts tests
	10.2 TSI input test
	10.2.1 TSI input electrode disconnected (open pin) tests

	10.3 Shorts or disconnection on guard sensors or shield electrode
	10.4 TSI input test architecture
	10.4.1 TSI input check with non-stimulated inputs
	10.4.2 TSI input check with stimulated inputs (signal delta check)
	10.4.2.1 TSI input channel stimulation

	10.5 TSI test implementation
	10.5.1 TSI input test principles
	10.5.2 TSI stimulated input test principles
	10.5.3 TSI test input function call example
	10.5.4 FS_TSI_InputInit()
	10.5.5 FS_TSI_InputCheckNONStimulated()
	10.5.6 FS_TSI_InputCheckStimulated()
	10.5.7 FS_TSI_InputStimulate()
	10.5.8 FS_TSI_InputRelease()
	10.5.9 FS_TSI_InputCheckNONStimulated_v6()
	10.5.10 FS_TSI_InputCheckStimulated_v6()
	10.5.11 FS_TSI_InputStimulate_v6()
	10.5.12 FS_TSI_InputRelease_v6()

	11 Watchdog test
	11.1 Watchdog test in compliance with IEC/UL standards
	11.2 Watchdog test implementation
	11.2.1 FS_WDOG_Setup_LPTMR()
	11.2.2 FS_WDOG_Setup_KE0XZ()
	11.2.3 FS_WDOG_Setup_IMX_GPT()
	11.2.4 FS_WDOG_Check()
	11.2.5 FS_WDOG_Setup_WWDT_LPC_mrt()
	11.2.6 FS_WDOG_Setup_WWDT_CTIMER()
	11.2.7 FS_WDOG_Check_WWDT_LPC()
	11.2.8 FS_WDOG_Check_WWDT_LPC55SXX()
	11.2.9 FS_WDOG_Check_WWDT_MCX()

	12 Note about the source code in the document
	13 Revision history
	Legal information
	Tables
	Figures
	Contents

